ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemlt GIF version

Theorem prarloclemlt 6591
Description: Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6601. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemlt (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))

Proof of Theorem prarloclemlt
StepHypRef Expression
1 2onn 6094 . . . . . . . . . . . 12 2𝑜 ∈ ω
2 nnacl 6059 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 2𝑜 ∈ ω) → (𝑦 +𝑜 2𝑜) ∈ ω)
31, 2mpan2 401 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +𝑜 2𝑜) ∈ ω)
4 nnaword1 6086 . . . . . . . . . . 11 (((𝑦 +𝑜 2𝑜) ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +𝑜 2𝑜) ⊆ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
53, 4sylan 267 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +𝑜 2𝑜) ⊆ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
6 1onn 6093 . . . . . . . . . . . . . . 15 1𝑜 ∈ ω
76elexi 2567 . . . . . . . . . . . . . 14 1𝑜 ∈ V
87sucid 4154 . . . . . . . . . . . . 13 1𝑜 ∈ suc 1𝑜
9 df-2o 6002 . . . . . . . . . . . . 13 2𝑜 = suc 1𝑜
108, 9eleqtrri 2113 . . . . . . . . . . . 12 1𝑜 ∈ 2𝑜
11 nnaordi 6081 . . . . . . . . . . . . 13 ((2𝑜 ∈ ω ∧ 𝑦 ∈ ω) → (1𝑜 ∈ 2𝑜 → (𝑦 +𝑜 1𝑜) ∈ (𝑦 +𝑜 2𝑜)))
121, 11mpan 400 . . . . . . . . . . . 12 (𝑦 ∈ ω → (1𝑜 ∈ 2𝑜 → (𝑦 +𝑜 1𝑜) ∈ (𝑦 +𝑜 2𝑜)))
1310, 12mpi 15 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +𝑜 1𝑜) ∈ (𝑦 +𝑜 2𝑜))
1413adantr 261 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +𝑜 1𝑜) ∈ (𝑦 +𝑜 2𝑜))
155, 14sseldd 2946 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +𝑜 1𝑜) ∈ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
1615ancoms 255 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +𝑜 1𝑜) ∈ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
17 1pi 6413 . . . . . . . . . . 11 1𝑜N
18 nnppipi 6441 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 1𝑜N) → (𝑦 +𝑜 1𝑜) ∈ N)
1917, 18mpan2 401 . . . . . . . . . 10 (𝑦 ∈ ω → (𝑦 +𝑜 1𝑜) ∈ N)
2019adantl 262 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +𝑜 1𝑜) ∈ N)
21 o1p1e2 6048 . . . . . . . . . . . . . 14 (1𝑜 +𝑜 1𝑜) = 2𝑜
22 nnppipi 6441 . . . . . . . . . . . . . . 15 ((1𝑜 ∈ ω ∧ 1𝑜N) → (1𝑜 +𝑜 1𝑜) ∈ N)
236, 17, 22mp2an 402 . . . . . . . . . . . . . 14 (1𝑜 +𝑜 1𝑜) ∈ N
2421, 23eqeltrri 2111 . . . . . . . . . . . . 13 2𝑜N
25 nnppipi 6441 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 2𝑜N) → (𝑦 +𝑜 2𝑜) ∈ N)
2624, 25mpan2 401 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝑦 +𝑜 2𝑜) ∈ N)
27 pinn 6407 . . . . . . . . . . . 12 ((𝑦 +𝑜 2𝑜) ∈ N → (𝑦 +𝑜 2𝑜) ∈ ω)
2826, 27syl 14 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +𝑜 2𝑜) ∈ ω)
29 nnacom 6063 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +𝑜 2𝑜) ∈ ω) → (𝑋 +𝑜 (𝑦 +𝑜 2𝑜)) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
3028, 29sylan2 270 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +𝑜 (𝑦 +𝑜 2𝑜)) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
31 nnppipi 6441 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +𝑜 2𝑜) ∈ N) → (𝑋 +𝑜 (𝑦 +𝑜 2𝑜)) ∈ N)
3226, 31sylan2 270 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +𝑜 (𝑦 +𝑜 2𝑜)) ∈ N)
3330, 32eqeltrrd 2115 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N)
34 ltpiord 6417 . . . . . . . . 9 (((𝑦 +𝑜 1𝑜) ∈ N ∧ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N) → ((𝑦 +𝑜 1𝑜) <N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ↔ (𝑦 +𝑜 1𝑜) ∈ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
3520, 33, 34syl2anc 391 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 1𝑜) <N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ↔ (𝑦 +𝑜 1𝑜) ∈ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
3616, 35mpbird 156 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +𝑜 1𝑜) <N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
37 mulidpi 6416 . . . . . . . . 9 ((𝑦 +𝑜 1𝑜) ∈ N → ((𝑦 +𝑜 1𝑜) ·N 1𝑜) = (𝑦 +𝑜 1𝑜))
3820, 37syl 14 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 1𝑜) ·N 1𝑜) = (𝑦 +𝑜 1𝑜))
39 mulcompig 6429 . . . . . . . . . 10 ((((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N ∧ 1𝑜N) → (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ·N 1𝑜) = (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
4033, 17, 39sylancl 392 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ·N 1𝑜) = (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
41 mulidpi 6416 . . . . . . . . . 10 (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N → (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ·N 1𝑜) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
4233, 41syl 14 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ·N 1𝑜) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
4340, 42eqtr3d 2074 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
4438, 43breq12d 3777 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)) ↔ (𝑦 +𝑜 1𝑜) <N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
4536, 44mpbird 156 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
46 simpr 103 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
47 ordpipqqs 6472 . . . . . . . . . 10 ((((𝑦 +𝑜 1𝑜) ∈ N ∧ 1𝑜N) ∧ (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N ∧ 1𝑜N)) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
4817, 47mpanl2 411 . . . . . . . . 9 (((𝑦 +𝑜 1𝑜) ∈ N ∧ (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N ∧ 1𝑜N)) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
4917, 48mpanr2 414 . . . . . . . 8 (((𝑦 +𝑜 1𝑜) ∈ N ∧ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
5019, 49sylan 267 . . . . . . 7 ((𝑦 ∈ ω ∧ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
5146, 33, 50syl2anc 391 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
5245, 51mpbird 156 . . . . 5 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )
5352adantlr 446 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )
54 opelxpi 4376 . . . . . . . . 9 (((𝑦 +𝑜 1𝑜) ∈ N ∧ 1𝑜N) → ⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩ ∈ (N × N))
5520, 17, 54sylancl 392 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩ ∈ (N × N))
56 enqex 6458 . . . . . . . . 9 ~Q ∈ V
5756ecelqsi 6160 . . . . . . . 8 (⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩ ∈ (N × N) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
5855, 57syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
59 df-nqqs 6446 . . . . . . 7 Q = ((N × N) / ~Q )
6058, 59syl6eleqr 2131 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ)
6160adantlr 446 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ)
62 opelxpi 4376 . . . . . . . . 9 ((((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N ∧ 1𝑜N) → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩ ∈ (N × N))
6333, 17, 62sylancl 392 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩ ∈ (N × N))
6456ecelqsi 6160 . . . . . . . 8 (⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩ ∈ (N × N) → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
6563, 64syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
6665, 59syl6eleqr 2131 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ)
6766adantlr 446 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ)
68 simplr3 948 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑃Q)
69 ltmnqg 6499 . . . . 5 (([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ ∧ [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ𝑃Q) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )))
7061, 67, 68, 69syl3anc 1135 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )))
7153, 70mpbid 135 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ))
72 mulcomnqg 6481 . . . . 5 ((𝑃Q ∧ [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ) → (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃))
7368, 61, 72syl2anc 391 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃))
74 mulcomnqg 6481 . . . . 5 ((𝑃Q ∧ [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ) → (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))
7568, 67, 74syl2anc 391 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))
7673, 75breq12d 3777 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ) ↔ ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))
7771, 76mpbid 135 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))
78 mulclnq 6474 . . . 4 (([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ𝑃Q) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q)
7961, 68, 78syl2anc 391 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q)
80 mulclnq 6474 . . . 4 (([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ𝑃Q) → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q)
8167, 68, 80syl2anc 391 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q)
82 simplr1 946 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ⟨𝐿, 𝑈⟩ ∈ P)
83 simplr2 947 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴𝐿)
84 elprnql 6579 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
8582, 83, 84syl2anc 391 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴Q)
86 ltanqg 6498 . . 3 ((([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q ∧ ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q𝐴Q) → (([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))))
8779, 81, 85, 86syl3anc 1135 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))))
8877, 87mpbid 135 1 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  wss 2917  cop 3378   class class class wbr 3764  suc csuc 4102  ωcom 4313   × cxp 4343  (class class class)co 5512  1𝑜c1o 5994  2𝑜c2o 5995   +𝑜 coa 5998  [cec 6104   / cqs 6105  Ncnpi 6370   ·N cmi 6372   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380   ·Q cmq 6381   <Q cltq 6383  Pcnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-ltnqqs 6451  df-inp 6564
This theorem is referenced by:  prarloclem3step  6594
  Copyright terms: Public domain W3C validator