ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordi GIF version

Theorem nnaordi 6081
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))

Proof of Theorem nnaordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5520 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐶))
2 oveq2 5520 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐶))
31, 2eleq12d 2108 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴 +𝑜 𝑥) ∈ (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 𝐶) ∈ (𝐵 +𝑜 𝐶)))
43imbi2d 219 . . . . . . 7 (𝑥 = 𝐶 → (((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +𝑜 𝑥) ∈ (𝐵 +𝑜 𝑥)) ↔ ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +𝑜 𝐶) ∈ (𝐵 +𝑜 𝐶))))
5 oveq2 5520 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 ∅))
6 oveq2 5520 . . . . . . . . 9 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
75, 6eleq12d 2108 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 +𝑜 𝑥) ∈ (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 ∅) ∈ (𝐵 +𝑜 ∅)))
8 oveq2 5520 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑦))
9 oveq2 5520 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
108, 9eleq12d 2108 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 +𝑜 𝑥) ∈ (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑦)))
11 oveq2 5520 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 suc 𝑦))
12 oveq2 5520 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1311, 12eleq12d 2108 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 +𝑜 𝑥) ∈ (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 suc 𝑦) ∈ (𝐵 +𝑜 suc 𝑦)))
14 simpr 103 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
15 elnn 4328 . . . . . . . . . . 11 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
1615ancoms 255 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ∈ ω)
17 nna0 6053 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)
1816, 17syl 14 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +𝑜 ∅) = 𝐴)
19 nna0 6053 . . . . . . . . . 10 (𝐵 ∈ ω → (𝐵 +𝑜 ∅) = 𝐵)
2019adantr 261 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐵 +𝑜 ∅) = 𝐵)
2114, 18, 203eltr4d 2121 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +𝑜 ∅) ∈ (𝐵 +𝑜 ∅))
22 simprl 483 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ ω)
23 simpl 102 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑦 ∈ ω)
24 nnacl 6059 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 𝑦) ∈ ω)
2522, 23, 24syl2anc 391 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +𝑜 𝑦) ∈ ω)
26 nnsucelsuc 6070 . . . . . . . . . . . 12 ((𝐵 +𝑜 𝑦) ∈ ω → ((𝐴 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑦) ↔ suc (𝐴 +𝑜 𝑦) ∈ suc (𝐵 +𝑜 𝑦)))
2725, 26syl 14 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑦) ↔ suc (𝐴 +𝑜 𝑦) ∈ suc (𝐵 +𝑜 𝑦)))
2816adantl 262 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
29 nnon 4332 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → 𝐴 ∈ On)
3028, 29syl 14 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ On)
31 nnon 4332 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → 𝑦 ∈ On)
3231adantr 261 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑦 ∈ On)
33 oasuc 6044 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
3430, 32, 33syl2anc 391 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
35 nnon 4332 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → 𝐵 ∈ On)
3635ad2antrl 459 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ On)
37 oasuc 6044 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
3836, 32, 37syl2anc 391 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
3934, 38eleq12d 2108 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +𝑜 suc 𝑦) ∈ (𝐵 +𝑜 suc 𝑦) ↔ suc (𝐴 +𝑜 𝑦) ∈ suc (𝐵 +𝑜 𝑦)))
4027, 39bitr4d 180 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑦) ↔ (𝐴 +𝑜 suc 𝑦) ∈ (𝐵 +𝑜 suc 𝑦)))
4140biimpd 132 . . . . . . . . 9 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑦) → (𝐴 +𝑜 suc 𝑦) ∈ (𝐵 +𝑜 suc 𝑦)))
4241ex 108 . . . . . . . 8 (𝑦 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → ((𝐴 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑦) → (𝐴 +𝑜 suc 𝑦) ∈ (𝐵 +𝑜 suc 𝑦))))
437, 10, 13, 21, 42finds2 4324 . . . . . . 7 (𝑥 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +𝑜 𝑥) ∈ (𝐵 +𝑜 𝑥)))
444, 43vtoclga 2619 . . . . . 6 (𝐶 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +𝑜 𝐶) ∈ (𝐵 +𝑜 𝐶)))
4544imp 115 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +𝑜 𝐶) ∈ (𝐵 +𝑜 𝐶))
4616adantl 262 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
47 simpl 102 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐶 ∈ ω)
48 nnacom 6063 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 +𝑜 𝐶) = (𝐶 +𝑜 𝐴))
4946, 47, 48syl2anc 391 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +𝑜 𝐶) = (𝐶 +𝑜 𝐴))
50 nnacom 6063 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 +𝑜 𝐶) = (𝐶 +𝑜 𝐵))
5150ancoms 255 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +𝑜 𝐶) = (𝐶 +𝑜 𝐵))
5251adantrr 448 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +𝑜 𝐶) = (𝐶 +𝑜 𝐵))
5345, 49, 523eltr3d 2120 . . . 4 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
54533impb 1100 . . 3 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
55543com12 1108 . 2 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴𝐵) → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵))
56553expia 1106 1 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  c0 3224  Oncon0 4100  suc csuc 4102  ωcom 4313  (class class class)co 5512   +𝑜 coa 5998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005
This theorem is referenced by:  nnaord  6082  nnmordi  6089  addclpi  6425  addnidpig  6434  archnqq  6515  prarloclemarch2  6517  prarloclemlt  6591
  Copyright terms: Public domain W3C validator