ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch2 GIF version

Theorem prarloclemarch2 6517
Description: Like prarloclemarch 6516 but the integer must be at least two, and there is also 𝐵 added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 6601. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prarloclemarch2 ((𝐴Q𝐵Q𝐶Q) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem prarloclemarch2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prarloclemarch 6516 . . 3 ((𝐴Q𝐶Q) → ∃𝑧N 𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
213adant2 923 . 2 ((𝐴Q𝐵Q𝐶Q) → ∃𝑧N 𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
3 pinn 6407 . . . . . . . 8 (𝑧N𝑧 ∈ ω)
4 1pi 6413 . . . . . . . . . . . 12 1𝑜N
54elexi 2567 . . . . . . . . . . 11 1𝑜 ∈ V
65sucid 4154 . . . . . . . . . 10 1𝑜 ∈ suc 1𝑜
7 df-2o 6002 . . . . . . . . . 10 2𝑜 = suc 1𝑜
86, 7eleqtrri 2113 . . . . . . . . 9 1𝑜 ∈ 2𝑜
9 2onn 6094 . . . . . . . . . . 11 2𝑜 ∈ ω
10 nnaword2 6087 . . . . . . . . . . 11 ((2𝑜 ∈ ω ∧ 𝑧 ∈ ω) → 2𝑜 ⊆ (𝑧 +𝑜 2𝑜))
119, 10mpan 400 . . . . . . . . . 10 (𝑧 ∈ ω → 2𝑜 ⊆ (𝑧 +𝑜 2𝑜))
1211sseld 2944 . . . . . . . . 9 (𝑧 ∈ ω → (1𝑜 ∈ 2𝑜 → 1𝑜 ∈ (𝑧 +𝑜 2𝑜)))
138, 12mpi 15 . . . . . . . 8 (𝑧 ∈ ω → 1𝑜 ∈ (𝑧 +𝑜 2𝑜))
143, 13syl 14 . . . . . . 7 (𝑧N → 1𝑜 ∈ (𝑧 +𝑜 2𝑜))
15 o1p1e2 6048 . . . . . . . . 9 (1𝑜 +𝑜 1𝑜) = 2𝑜
16 addpiord 6414 . . . . . . . . . . 11 ((1𝑜N ∧ 1𝑜N) → (1𝑜 +N 1𝑜) = (1𝑜 +𝑜 1𝑜))
174, 4, 16mp2an 402 . . . . . . . . . 10 (1𝑜 +N 1𝑜) = (1𝑜 +𝑜 1𝑜)
18 addclpi 6425 . . . . . . . . . . 11 ((1𝑜N ∧ 1𝑜N) → (1𝑜 +N 1𝑜) ∈ N)
194, 4, 18mp2an 402 . . . . . . . . . 10 (1𝑜 +N 1𝑜) ∈ N
2017, 19eqeltrri 2111 . . . . . . . . 9 (1𝑜 +𝑜 1𝑜) ∈ N
2115, 20eqeltrri 2111 . . . . . . . 8 2𝑜N
22 addpiord 6414 . . . . . . . 8 ((𝑧N ∧ 2𝑜N) → (𝑧 +N 2𝑜) = (𝑧 +𝑜 2𝑜))
2321, 22mpan2 401 . . . . . . 7 (𝑧N → (𝑧 +N 2𝑜) = (𝑧 +𝑜 2𝑜))
2414, 23eleqtrrd 2117 . . . . . 6 (𝑧N → 1𝑜 ∈ (𝑧 +N 2𝑜))
25 addclpi 6425 . . . . . . . 8 ((𝑧N ∧ 2𝑜N) → (𝑧 +N 2𝑜) ∈ N)
2621, 25mpan2 401 . . . . . . 7 (𝑧N → (𝑧 +N 2𝑜) ∈ N)
27 ltpiord 6417 . . . . . . . 8 ((1𝑜N ∧ (𝑧 +N 2𝑜) ∈ N) → (1𝑜 <N (𝑧 +N 2𝑜) ↔ 1𝑜 ∈ (𝑧 +N 2𝑜)))
284, 27mpan 400 . . . . . . 7 ((𝑧 +N 2𝑜) ∈ N → (1𝑜 <N (𝑧 +N 2𝑜) ↔ 1𝑜 ∈ (𝑧 +N 2𝑜)))
2926, 28syl 14 . . . . . 6 (𝑧N → (1𝑜 <N (𝑧 +N 2𝑜) ↔ 1𝑜 ∈ (𝑧 +N 2𝑜)))
3024, 29mpbird 156 . . . . 5 (𝑧N → 1𝑜 <N (𝑧 +N 2𝑜))
3130adantl 262 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 1𝑜 <N (𝑧 +N 2𝑜))
3231adantrr 448 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 1𝑜 <N (𝑧 +N 2𝑜))
33 nna0 6053 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → (𝑧 +𝑜 ∅) = 𝑧)
34 0lt1o 6023 . . . . . . . . . . . . . . . . . . . 20 ∅ ∈ 1𝑜
35 1on 6008 . . . . . . . . . . . . . . . . . . . . . 22 1𝑜 ∈ On
3635onsuci 4242 . . . . . . . . . . . . . . . . . . . . 21 suc 1𝑜 ∈ On
37 ontr1 4126 . . . . . . . . . . . . . . . . . . . . 21 (suc 1𝑜 ∈ On → ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ suc 1𝑜) → ∅ ∈ suc 1𝑜))
3836, 37ax-mp 7 . . . . . . . . . . . . . . . . . . . 20 ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ suc 1𝑜) → ∅ ∈ suc 1𝑜)
3934, 6, 38mp2an 402 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ suc 1𝑜
4039, 7eleqtrri 2113 . . . . . . . . . . . . . . . . . 18 ∅ ∈ 2𝑜
41 nnaordi 6081 . . . . . . . . . . . . . . . . . . 19 ((2𝑜 ∈ ω ∧ 𝑧 ∈ ω) → (∅ ∈ 2𝑜 → (𝑧 +𝑜 ∅) ∈ (𝑧 +𝑜 2𝑜)))
429, 41mpan 400 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ω → (∅ ∈ 2𝑜 → (𝑧 +𝑜 ∅) ∈ (𝑧 +𝑜 2𝑜)))
4340, 42mpi 15 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ω → (𝑧 +𝑜 ∅) ∈ (𝑧 +𝑜 2𝑜))
4433, 43eqeltrrd 2115 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ω → 𝑧 ∈ (𝑧 +𝑜 2𝑜))
453, 44syl 14 . . . . . . . . . . . . . . 15 (𝑧N𝑧 ∈ (𝑧 +𝑜 2𝑜))
4645, 23eleqtrrd 2117 . . . . . . . . . . . . . 14 (𝑧N𝑧 ∈ (𝑧 +N 2𝑜))
47 ltpiord 6417 . . . . . . . . . . . . . . 15 ((𝑧N ∧ (𝑧 +N 2𝑜) ∈ N) → (𝑧 <N (𝑧 +N 2𝑜) ↔ 𝑧 ∈ (𝑧 +N 2𝑜)))
4826, 47mpdan 398 . . . . . . . . . . . . . 14 (𝑧N → (𝑧 <N (𝑧 +N 2𝑜) ↔ 𝑧 ∈ (𝑧 +N 2𝑜)))
4946, 48mpbird 156 . . . . . . . . . . . . 13 (𝑧N𝑧 <N (𝑧 +N 2𝑜))
50 mulidpi 6416 . . . . . . . . . . . . 13 (𝑧N → (𝑧 ·N 1𝑜) = 𝑧)
51 mulcompig 6429 . . . . . . . . . . . . . . . 16 (((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N) → ((𝑧 +N 2𝑜) ·N 1𝑜) = (1𝑜 ·N (𝑧 +N 2𝑜)))
524, 51mpan2 401 . . . . . . . . . . . . . . 15 ((𝑧 +N 2𝑜) ∈ N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (1𝑜 ·N (𝑧 +N 2𝑜)))
5326, 52syl 14 . . . . . . . . . . . . . 14 (𝑧N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (1𝑜 ·N (𝑧 +N 2𝑜)))
54 mulidpi 6416 . . . . . . . . . . . . . . 15 ((𝑧 +N 2𝑜) ∈ N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (𝑧 +N 2𝑜))
5526, 54syl 14 . . . . . . . . . . . . . 14 (𝑧N → ((𝑧 +N 2𝑜) ·N 1𝑜) = (𝑧 +N 2𝑜))
5653, 55eqtr3d 2074 . . . . . . . . . . . . 13 (𝑧N → (1𝑜 ·N (𝑧 +N 2𝑜)) = (𝑧 +N 2𝑜))
5749, 50, 563brtr4d 3794 . . . . . . . . . . . 12 (𝑧N → (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜)))
58 ordpipqqs 6472 . . . . . . . . . . . . . . 15 (((𝑧N ∧ 1𝑜N) ∧ ((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N)) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
594, 58mpanl2 411 . . . . . . . . . . . . . 14 ((𝑧N ∧ ((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N)) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
604, 59mpanr2 414 . . . . . . . . . . . . 13 ((𝑧N ∧ (𝑧 +N 2𝑜) ∈ N) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
6126, 60mpdan 398 . . . . . . . . . . . 12 (𝑧N → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝑧 ·N 1𝑜) <N (1𝑜 ·N (𝑧 +N 2𝑜))))
6257, 61mpbird 156 . . . . . . . . . . 11 (𝑧N → [⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )
6362adantl 262 . . . . . . . . . 10 ((𝐶Q𝑧N) → [⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )
64 opelxpi 4376 . . . . . . . . . . . . . . . 16 (((𝑧 +N 2𝑜) ∈ N ∧ 1𝑜N) → ⟨(𝑧 +N 2𝑜), 1𝑜⟩ ∈ (N × N))
654, 64mpan2 401 . . . . . . . . . . . . . . 15 ((𝑧 +N 2𝑜) ∈ N → ⟨(𝑧 +N 2𝑜), 1𝑜⟩ ∈ (N × N))
66 enqex 6458 . . . . . . . . . . . . . . . 16 ~Q ∈ V
6766ecelqsi 6160 . . . . . . . . . . . . . . 15 (⟨(𝑧 +N 2𝑜), 1𝑜⟩ ∈ (N × N) → [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
6826, 65, 673syl 17 . . . . . . . . . . . . . 14 (𝑧N → [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
69 df-nqqs 6446 . . . . . . . . . . . . . 14 Q = ((N × N) / ~Q )
7068, 69syl6eleqr 2131 . . . . . . . . . . . . 13 (𝑧N → [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ)
71 opelxpi 4376 . . . . . . . . . . . . . . . . 17 ((𝑧N ∧ 1𝑜N) → ⟨𝑧, 1𝑜⟩ ∈ (N × N))
724, 71mpan2 401 . . . . . . . . . . . . . . . 16 (𝑧N → ⟨𝑧, 1𝑜⟩ ∈ (N × N))
7366ecelqsi 6160 . . . . . . . . . . . . . . . 16 (⟨𝑧, 1𝑜⟩ ∈ (N × N) → [⟨𝑧, 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
7472, 73syl 14 . . . . . . . . . . . . . . 15 (𝑧N → [⟨𝑧, 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
7574, 69syl6eleqr 2131 . . . . . . . . . . . . . 14 (𝑧N → [⟨𝑧, 1𝑜⟩] ~QQ)
76 ltmnqg 6499 . . . . . . . . . . . . . 14 (([⟨𝑧, 1𝑜⟩] ~QQ ∧ [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
7775, 76syl3an1 1168 . . . . . . . . . . . . 13 ((𝑧N ∧ [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
7870, 77syl3an2 1169 . . . . . . . . . . . 12 ((𝑧N𝑧N𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
79783anidm12 1192 . . . . . . . . . . 11 ((𝑧N𝐶Q) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
8079ancoms 255 . . . . . . . . . 10 ((𝐶Q𝑧N) → ([⟨𝑧, 1𝑜⟩] ~Q <Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ↔ (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )))
8163, 80mpbid 135 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) <Q (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ))
82 mulcomnqg 6481 . . . . . . . . . 10 ((𝐶Q ∧ [⟨𝑧, 1𝑜⟩] ~QQ) → (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) = ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
8375, 82sylan2 270 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨𝑧, 1𝑜⟩] ~Q ) = ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))
84 mulcomnqg 6481 . . . . . . . . . 10 ((𝐶Q ∧ [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ) → (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
8570, 84sylan2 270 . . . . . . . . 9 ((𝐶Q𝑧N) → (𝐶 ·Q [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
8681, 83, 853brtr3d 3793 . . . . . . . 8 ((𝐶Q𝑧N) → ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
87863ad2antl3 1068 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
8887adantrr 448 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
89 ltsonq 6496 . . . . . . . . . 10 <Q Or Q
90 ltrelnq 6463 . . . . . . . . . 10 <Q ⊆ (Q × Q)
9189, 90sotri 4720 . . . . . . . . 9 ((𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) ∧ ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
9291ex 108 . . . . . . . 8 (𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) → (([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
9392adantl 262 . . . . . . 7 ((𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶)) → (([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
9493adantl 262 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → (([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶) <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
9588, 94mpd 13 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
96 mulclnq 6474 . . . . . . . . . 10 (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~QQ𝐶Q) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
9770, 96sylan 267 . . . . . . . . 9 ((𝑧N𝐶Q) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
9897ancoms 255 . . . . . . . 8 ((𝐶Q𝑧N) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
99983ad2antl3 1068 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q)
100 simpl2 908 . . . . . . 7 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 𝐵Q)
101 ltaddnq 6505 . . . . . . 7 ((([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q𝐵Q) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
10299, 100, 101syl2anc 391 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
103102adantrr 448 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
10489, 90sotri 4720 . . . . 5 ((𝐴 <Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∧ ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵)) → 𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
10595, 103, 104syl2anc 391 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵))
106 addcomnqg 6479 . . . . . . 7 ((([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) ∈ Q𝐵Q) → (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) = (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
10799, 100, 106syl2anc 391 . . . . . 6 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) = (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
108107breq2d 3776 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → (𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))))
109108adantrr 448 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → (𝐴 <Q (([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶) +Q 𝐵) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))))
110105, 109mpbid 135 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
111 simpr 103 . . . . 5 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → 𝑧N)
112 breq2 3768 . . . . . . . 8 (𝑥 = (𝑧 +N 2𝑜) → (1𝑜 <N 𝑥 ↔ 1𝑜 <N (𝑧 +N 2𝑜)))
113 opeq1 3549 . . . . . . . . . . . 12 (𝑥 = (𝑧 +N 2𝑜) → ⟨𝑥, 1𝑜⟩ = ⟨(𝑧 +N 2𝑜), 1𝑜⟩)
114113eceq1d 6142 . . . . . . . . . . 11 (𝑥 = (𝑧 +N 2𝑜) → [⟨𝑥, 1𝑜⟩] ~Q = [⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q )
115114oveq1d 5527 . . . . . . . . . 10 (𝑥 = (𝑧 +N 2𝑜) → ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶) = ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))
116115oveq2d 5528 . . . . . . . . 9 (𝑥 = (𝑧 +N 2𝑜) → (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)) = (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))
117116breq2d 3776 . . . . . . . 8 (𝑥 = (𝑧 +N 2𝑜) → (𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)) ↔ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))))
118112, 117anbi12d 442 . . . . . . 7 (𝑥 = (𝑧 +N 2𝑜) → ((1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))) ↔ (1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))))
119118rspcev 2656 . . . . . 6 (((𝑧 +N 2𝑜) ∈ N ∧ (1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶)))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
120119ex 108 . . . . 5 ((𝑧 +N 2𝑜) ∈ N → ((1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)))))
121111, 26, 1203syl 17 . . . 4 (((𝐴Q𝐵Q𝐶Q) ∧ 𝑧N) → ((1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)))))
122121adantrr 448 . . 3 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ((1𝑜 <N (𝑧 +N 2𝑜) ∧ 𝐴 <Q (𝐵 +Q ([⟨(𝑧 +N 2𝑜), 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶)))))
12332, 110, 122mp2and 409 . 2 (((𝐴Q𝐵Q𝐶Q) ∧ (𝑧N𝐴 <Q ([⟨𝑧, 1𝑜⟩] ~Q ·Q 𝐶))) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
1242, 123rexlimddv 2437 1 ((𝐴Q𝐵Q𝐶Q) → ∃𝑥N (1𝑜 <N 𝑥𝐴 <Q (𝐵 +Q ([⟨𝑥, 1𝑜⟩] ~Q ·Q 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  wrex 2307  wss 2917  c0 3224  cop 3378   class class class wbr 3764  Oncon0 4100  suc csuc 4102  ωcom 4313   × cxp 4343  (class class class)co 5512  1𝑜c1o 5994  2𝑜c2o 5995   +𝑜 coa 5998  [cec 6104   / cqs 6105  Ncnpi 6370   +N cpli 6371   ·N cmi 6372   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380   ·Q cmq 6381   <Q cltq 6383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451
This theorem is referenced by:  prarloc  6601
  Copyright terms: Public domain W3C validator