ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc Structured version   GIF version

Theorem oasuc 5959
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc ((A On B On) → (A +𝑜 suc B) = suc (A +𝑜 B))

Proof of Theorem oasuc
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 suceloni 4177 . . . . . 6 (B On → suc B On)
2 oav2 5958 . . . . . 6 ((A On suc B On) → (A +𝑜 suc B) = (A x suc B suc (A +𝑜 x)))
31, 2sylan2 270 . . . . 5 ((A On B On) → (A +𝑜 suc B) = (A x suc B suc (A +𝑜 x)))
4 df-suc 4057 . . . . . . . . . 10 suc B = (B ∪ {B})
5 iuneq1 3644 . . . . . . . . . 10 (suc B = (B ∪ {B}) → x suc B suc (A +𝑜 x) = x (B ∪ {B})suc (A +𝑜 x))
64, 5ax-mp 7 . . . . . . . . 9 x suc B suc (A +𝑜 x) = x (B ∪ {B})suc (A +𝑜 x)
7 iunxun 3709 . . . . . . . . 9 x (B ∪ {B})suc (A +𝑜 x) = ( x B suc (A +𝑜 x) ∪ x {B}suc (A +𝑜 x))
86, 7eqtri 2042 . . . . . . . 8 x suc B suc (A +𝑜 x) = ( x B suc (A +𝑜 x) ∪ x {B}suc (A +𝑜 x))
9 oveq2 5444 . . . . . . . . . . 11 (x = B → (A +𝑜 x) = (A +𝑜 B))
10 suceq 4088 . . . . . . . . . . 11 ((A +𝑜 x) = (A +𝑜 B) → suc (A +𝑜 x) = suc (A +𝑜 B))
119, 10syl 14 . . . . . . . . . 10 (x = B → suc (A +𝑜 x) = suc (A +𝑜 B))
1211iunxsng 3706 . . . . . . . . 9 (B On → x {B}suc (A +𝑜 x) = suc (A +𝑜 B))
1312uneq2d 3074 . . . . . . . 8 (B On → ( x B suc (A +𝑜 x) ∪ x {B}suc (A +𝑜 x)) = ( x B suc (A +𝑜 x) ∪ suc (A +𝑜 B)))
148, 13syl5eq 2066 . . . . . . 7 (B On → x suc B suc (A +𝑜 x) = ( x B suc (A +𝑜 x) ∪ suc (A +𝑜 B)))
1514uneq2d 3074 . . . . . 6 (B On → (A x suc B suc (A +𝑜 x)) = (A ∪ ( x B suc (A +𝑜 x) ∪ suc (A +𝑜 B))))
1615adantl 262 . . . . 5 ((A On B On) → (A x suc B suc (A +𝑜 x)) = (A ∪ ( x B suc (A +𝑜 x) ∪ suc (A +𝑜 B))))
173, 16eqtrd 2054 . . . 4 ((A On B On) → (A +𝑜 suc B) = (A ∪ ( x B suc (A +𝑜 x) ∪ suc (A +𝑜 B))))
18 unass 3077 . . . 4 ((A x B suc (A +𝑜 x)) ∪ suc (A +𝑜 B)) = (A ∪ ( x B suc (A +𝑜 x) ∪ suc (A +𝑜 B)))
1917, 18syl6eqr 2072 . . 3 ((A On B On) → (A +𝑜 suc B) = ((A x B suc (A +𝑜 x)) ∪ suc (A +𝑜 B)))
20 oav2 5958 . . . 4 ((A On B On) → (A +𝑜 B) = (A x B suc (A +𝑜 x)))
2120uneq1d 3073 . . 3 ((A On B On) → ((A +𝑜 B) ∪ suc (A +𝑜 B)) = ((A x B suc (A +𝑜 x)) ∪ suc (A +𝑜 B)))
2219, 21eqtr4d 2057 . 2 ((A On B On) → (A +𝑜 suc B) = ((A +𝑜 B) ∪ suc (A +𝑜 B)))
23 sssucid 4101 . . 3 (A +𝑜 B) ⊆ suc (A +𝑜 B)
24 ssequn1 3090 . . 3 ((A +𝑜 B) ⊆ suc (A +𝑜 B) ↔ ((A +𝑜 B) ∪ suc (A +𝑜 B)) = suc (A +𝑜 B))
2523, 24mpbi 133 . 2 ((A +𝑜 B) ∪ suc (A +𝑜 B)) = suc (A +𝑜 B)
2622, 25syl6eq 2070 1 ((A On B On) → (A +𝑜 suc B) = suc (A +𝑜 B))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1228   wcel 1374  cun 2892  wss 2894  {csn 3350   ciun 3631  Oncon0 4049  suc csuc 4051  (class class class)co 5436   +𝑜 coa 5913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-13 1385  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-coll 3846  ax-sep 3849  ax-pow 3901  ax-pr 3918  ax-un 4120  ax-setind 4204
This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-fal 1234  df-nf 1330  df-sb 1628  df-eu 1885  df-mo 1886  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ne 2188  df-ral 2289  df-rex 2290  df-reu 2291  df-rab 2293  df-v 2537  df-sbc 2742  df-csb 2830  df-dif 2897  df-un 2899  df-in 2901  df-ss 2908  df-nul 3202  df-pw 3336  df-sn 3356  df-pr 3357  df-op 3359  df-uni 3555  df-iun 3633  df-br 3739  df-opab 3793  df-mpt 3794  df-tr 3829  df-id 4004  df-iord 4052  df-on 4054  df-suc 4057  df-xp 4278  df-rel 4279  df-cnv 4280  df-co 4281  df-dm 4282  df-rn 4283  df-res 4284  df-ima 4285  df-iota 4794  df-fun 4831  df-fn 4832  df-f 4833  df-f1 4834  df-fo 4835  df-f1o 4836  df-fv 4837  df-ov 5439  df-oprab 5440  df-mpt2 5441  df-1st 5690  df-2nd 5691  df-recs 5842  df-irdg 5878  df-oadd 5920
This theorem is referenced by:  onasuc  5961  nnaordi  5992
  Copyright terms: Public domain W3C validator