ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oasuc GIF version

Theorem oasuc 6044
Description: Addition with successor. Definition 8.1 of [TakeutiZaring] p. 56. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oasuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))

Proof of Theorem oasuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suceloni 4227 . . . . . 6 (𝐵 ∈ On → suc 𝐵 ∈ On)
2 oav2 6043 . . . . . 6 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)))
31, 2sylan2 270 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)))
4 df-suc 4108 . . . . . . . . . 10 suc 𝐵 = (𝐵 ∪ {𝐵})
5 iuneq1 3670 . . . . . . . . . 10 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +𝑜 𝑥))
64, 5ax-mp 7 . . . . . . . . 9 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +𝑜 𝑥)
7 iunxun 3735 . . . . . . . . 9 𝑥 ∈ (𝐵 ∪ {𝐵})suc (𝐴 +𝑜 𝑥) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥))
86, 7eqtri 2060 . . . . . . . 8 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥))
9 oveq2 5520 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐵))
10 suceq 4139 . . . . . . . . . . 11 ((𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐵) → suc (𝐴 +𝑜 𝑥) = suc (𝐴 +𝑜 𝐵))
119, 10syl 14 . . . . . . . . . 10 (𝑥 = 𝐵 → suc (𝐴 +𝑜 𝑥) = suc (𝐴 +𝑜 𝐵))
1211iunxsng 3732 . . . . . . . . 9 (𝐵 ∈ On → 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥) = suc (𝐴 +𝑜 𝐵))
1312uneq2d 3097 . . . . . . . 8 (𝐵 ∈ On → ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ 𝑥 ∈ {𝐵}suc (𝐴 +𝑜 𝑥)) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵)))
148, 13syl5eq 2084 . . . . . . 7 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥) = ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵)))
1514uneq2d 3097 . . . . . 6 (𝐵 ∈ On → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵))))
1615adantl 262 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 𝑥 ∈ suc 𝐵 suc (𝐴 +𝑜 𝑥)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵))))
173, 16eqtrd 2072 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵))))
18 unass 3100 . . . 4 ((𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) ∪ suc (𝐴 +𝑜 𝐵)) = (𝐴 ∪ ( 𝑥𝐵 suc (𝐴 +𝑜 𝑥) ∪ suc (𝐴 +𝑜 𝐵)))
1917, 18syl6eqr 2090 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = ((𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) ∪ suc (𝐴 +𝑜 𝐵)))
20 oav2 6043 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)))
2120uneq1d 3096 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)) = ((𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) ∪ suc (𝐴 +𝑜 𝐵)))
2219, 21eqtr4d 2075 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)))
23 sssucid 4152 . . 3 (𝐴 +𝑜 𝐵) ⊆ suc (𝐴 +𝑜 𝐵)
24 ssequn1 3113 . . 3 ((𝐴 +𝑜 𝐵) ⊆ suc (𝐴 +𝑜 𝐵) ↔ ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵))
2523, 24mpbi 133 . 2 ((𝐴 +𝑜 𝐵) ∪ suc (𝐴 +𝑜 𝐵)) = suc (𝐴 +𝑜 𝐵)
2622, 25syl6eq 2088 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 suc 𝐵) = suc (𝐴 +𝑜 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  cun 2915  wss 2917  {csn 3375   ciun 3657  Oncon0 4100  suc csuc 4102  (class class class)co 5512   +𝑜 coa 5998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005
This theorem is referenced by:  onasuc  6046  nnaordi  6081
  Copyright terms: Public domain W3C validator