![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunxun | GIF version |
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iunxun | ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexun 3123 | . . . 4 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
2 | eliun 3661 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
3 | eliun 3661 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
4 | 2, 3 | orbi12i 681 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
5 | 1, 4 | bitr4i 176 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
6 | eliun 3661 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶) | |
7 | elun 3084 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) | |
8 | 5, 6, 7 | 3bitr4i 201 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶)) |
9 | 8 | eqriv 2037 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 629 = wceq 1243 ∈ wcel 1393 ∃wrex 2307 ∪ cun 2915 ∪ ciun 3657 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-iun 3659 |
This theorem is referenced by: iunsuc 4157 rdgisuc1 5971 oasuc 6044 omsuc 6051 |
Copyright terms: Public domain | W3C validator |