Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | orbi2i 679 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | orbi1i 680 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
5 | 2, 4 | bitri 173 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ∨ wo 629 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: andir 732 anddi 734 dcbii 747 3orbi123i 1094 3or6 1218 excxor 1269 19.33b2 1520 sbequilem 1719 sborv 1770 sbor 1828 r19.43 2468 rexun 3123 indi 3184 difindiss 3191 symdifxor 3203 unab 3204 dfpr2 3394 rabrsndc 3438 pwprss 3576 pwtpss 3577 unipr 3594 uniun 3599 iunun 3734 iunxun 3735 brun 3810 pwunss 4020 ordsoexmid 4286 onintexmid 4297 opthprc 4391 cnvsom 4861 ftpg 5347 tpostpos 5879 ltexprlemloc 6705 axpre-ltwlin 6957 axpre-apti 6959 axpre-mulext 6962 |
Copyright terms: Public domain | W3C validator |