ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisuc1 GIF version

Theorem rdgisuc1 5971
Description: One way of describing the value of the recursive definition generator at a successor. There is no condition on the characteristic function 𝐹 other than 𝐹 Fn V. Given that, the resulting expression encompasses both the expected successor term (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) but also terms that correspond to the initial value 𝐴 and to limit ordinals 𝑥𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)).

If we add conditions on the characteristic function, we can show tighter results such as rdgisucinc 5972. (Contributed by Jim Kingdon, 9-Jun-2019.)

Hypotheses
Ref Expression
rdgisuc1.1 (𝜑𝐹 Fn V)
rdgisuc1.2 (𝜑𝐴𝑉)
rdgisuc1.3 (𝜑𝐵 ∈ On)
Assertion
Ref Expression
rdgisuc1 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rdgisuc1
StepHypRef Expression
1 rdgisuc1.1 . . 3 (𝜑𝐹 Fn V)
2 rdgisuc1.2 . . 3 (𝜑𝐴𝑉)
3 rdgisuc1.3 . . . 4 (𝜑𝐵 ∈ On)
4 suceloni 4227 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ On)
53, 4syl 14 . . 3 (𝜑 → suc 𝐵 ∈ On)
6 rdgival 5969 . . 3 ((𝐹 Fn V ∧ 𝐴𝑉 ∧ suc 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
71, 2, 5, 6syl3anc 1135 . 2 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
8 df-suc 4108 . . . . . . 7 suc 𝐵 = (𝐵 ∪ {𝐵})
9 iuneq1 3670 . . . . . . 7 (suc 𝐵 = (𝐵 ∪ {𝐵}) → 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)))
108, 9ax-mp 7 . . . . . 6 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥))
11 iunxun 3735 . . . . . 6 𝑥 ∈ (𝐵 ∪ {𝐵})(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))
1210, 11eqtri 2060 . . . . 5 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))
13 fveq2 5178 . . . . . . . 8 (𝑥 = 𝐵 → (rec(𝐹, 𝐴)‘𝑥) = (rec(𝐹, 𝐴)‘𝐵))
1413fveq2d 5182 . . . . . . 7 (𝑥 = 𝐵 → (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1514iunxsng 3732 . . . . . 6 (𝐵 ∈ On → 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1615uneq2d 3097 . . . . 5 (𝐵 ∈ On → ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ 𝑥 ∈ {𝐵} (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1712, 16syl5eq 2084 . . . 4 (𝐵 ∈ On → 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥)) = ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1817uneq2d 3097 . . 3 (𝐵 ∈ On → (𝐴 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
193, 18syl 14 . 2 (𝜑 → (𝐴 𝑥 ∈ suc 𝐵(𝐹‘(rec(𝐹, 𝐴)‘𝑥))) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
207, 19eqtrd 2072 1 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393  Vcvv 2557  cun 2915  {csn 3375   ciun 3657  Oncon0 4100  suc csuc 4102   Fn wfn 4897  cfv 4902  reccrdg 5956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920  df-irdg 5957
This theorem is referenced by:  rdgisucinc  5972
  Copyright terms: Public domain W3C validator