ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgisucinc GIF version

Theorem rdgisucinc 5972
Description: Value of the recursive definition generator at a successor.

This can be thought of as a generalization of oasuc 6044 and omsuc 6051. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
rdgisuc1.1 (𝜑𝐹 Fn V)
rdgisuc1.2 (𝜑𝐴𝑉)
rdgisuc1.3 (𝜑𝐵 ∈ On)
rdgisucinc.inc (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
Assertion
Ref Expression
rdgisucinc (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rdgisucinc
StepHypRef Expression
1 rdgisuc1.1 . . . 4 (𝜑𝐹 Fn V)
2 rdgisuc1.2 . . . 4 (𝜑𝐴𝑉)
3 rdgisuc1.3 . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3rdgisuc1 5971 . . 3 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))))
5 unass 3100 . . 3 ((𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐴 ∪ ( 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
64, 5syl6eqr 2090 . 2 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = ((𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
7 rdgival 5969 . . . 4 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
81, 2, 3, 7syl3anc 1135 . . 3 (𝜑 → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))))
98uneq1d 3096 . 2 (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = ((𝐴 𝑥𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
10 rdgexggg 5964 . . . . 5 ((𝐹 Fn V ∧ 𝐴𝑉𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
111, 2, 3, 10syl3anc 1135 . . . 4 (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ∈ V)
12 rdgisucinc.inc . . . 4 (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
13 id 19 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → 𝑥 = (rec(𝐹, 𝐴)‘𝐵))
14 fveq2 5178 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝐹𝑥) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1513, 14sseq12d 2974 . . . . 5 (𝑥 = (rec(𝐹, 𝐴)‘𝐵) → (𝑥 ⊆ (𝐹𝑥) ↔ (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1615spcgv 2640 . . . 4 ((rec(𝐹, 𝐴)‘𝐵) ∈ V → (∀𝑥 𝑥 ⊆ (𝐹𝑥) → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))))
1711, 12, 16sylc 56 . . 3 (𝜑 → (rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
18 ssequn1 3113 . . 3 ((rec(𝐹, 𝐴)‘𝐵) ⊆ (𝐹‘(rec(𝐹, 𝐴)‘𝐵)) ↔ ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
1917, 18sylib 127 . 2 (𝜑 → ((rec(𝐹, 𝐴)‘𝐵) ∪ (𝐹‘(rec(𝐹, 𝐴)‘𝐵))) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
206, 9, 193eqtr2d 2078 1 (𝜑 → (rec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(rec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241   = wceq 1243  wcel 1393  Vcvv 2557  cun 2915  wss 2917   ciun 3657  Oncon0 4100  suc csuc 4102   Fn wfn 4897  cfv 4902  reccrdg 5956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920  df-irdg 5957
This theorem is referenced by:  frecrdg  5992
  Copyright terms: Public domain W3C validator