ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oav2 GIF version

Theorem oav2 6043
Description: Value of ordinal addition. (Contributed by Mario Carneiro and Jim Kingdon, 12-Aug-2019.)
Assertion
Ref Expression
oav2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oav2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oafnex 6024 . . 3 (𝑦 ∈ V ↦ suc 𝑦) Fn V
2 rdgival 5969 . . 3 (((𝑦 ∈ V ↦ suc 𝑦) Fn V ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = (𝐴 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))))
31, 2mp3an1 1219 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵) = (𝐴 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))))
4 oav 6034 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝐵))
5 onelon 4121 . . . . . 6 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
6 vex 2560 . . . . . . . . . 10 𝑥 ∈ V
7 oaexg 6028 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑥 ∈ V) → (𝐴 +𝑜 𝑥) ∈ V)
86, 7mpan2 401 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 +𝑜 𝑥) ∈ V)
9 sucexg 4224 . . . . . . . . . 10 ((𝐴 +𝑜 𝑥) ∈ V → suc (𝐴 +𝑜 𝑥) ∈ V)
108, 9syl 14 . . . . . . . . 9 (𝐴 ∈ On → suc (𝐴 +𝑜 𝑥) ∈ V)
11 suceq 4139 . . . . . . . . . 10 (𝑦 = (𝐴 +𝑜 𝑥) → suc 𝑦 = suc (𝐴 +𝑜 𝑥))
12 eqid 2040 . . . . . . . . . 10 (𝑦 ∈ V ↦ suc 𝑦) = (𝑦 ∈ V ↦ suc 𝑦)
1311, 12fvmptg 5248 . . . . . . . . 9 (((𝐴 +𝑜 𝑥) ∈ V ∧ suc (𝐴 +𝑜 𝑥) ∈ V) → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +𝑜 𝑥)) = suc (𝐴 +𝑜 𝑥))
148, 10, 13syl2anc 391 . . . . . . . 8 (𝐴 ∈ On → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +𝑜 𝑥)) = suc (𝐴 +𝑜 𝑥))
1514adantr 261 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +𝑜 𝑥)) = suc (𝐴 +𝑜 𝑥))
16 oav 6034 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 +𝑜 𝑥) = (rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))
1716fveq2d 5182 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((𝑦 ∈ V ↦ suc 𝑦)‘(𝐴 +𝑜 𝑥)) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
1815, 17eqtr3d 2074 . . . . . 6 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → suc (𝐴 +𝑜 𝑥) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
195, 18sylan2 270 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) → suc (𝐴 +𝑜 𝑥) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
2019anassrs 380 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥𝐵) → suc (𝐴 +𝑜 𝑥) = ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
2120iuneq2dv 3678 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥𝐵 suc (𝐴 +𝑜 𝑥) = 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥)))
2221uneq2d 3097 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)) = (𝐴 𝑥𝐵 ((𝑦 ∈ V ↦ suc 𝑦)‘(rec((𝑦 ∈ V ↦ suc 𝑦), 𝐴)‘𝑥))))
233, 4, 223eqtr4d 2082 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 𝑥𝐵 suc (𝐴 +𝑜 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  Vcvv 2557  cun 2915   ciun 3657  cmpt 3818  Oncon0 4100  suc csuc 4102   Fn wfn 4897  cfv 4902  (class class class)co 5512  reccrdg 5956   +𝑜 coa 5998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005
This theorem is referenced by:  oasuc  6044
  Copyright terms: Public domain W3C validator