![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4d | GIF version |
Description: Deduction form of bitr4i 176. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
bitr4d | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 2 | bicomd 129 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
4 | 1, 3 | bitrd 177 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 3bitr2d 205 3bitr2rd 206 3bitr4d 209 3bitr4rd 210 bianabs 543 imordc 796 3anibar 1072 xor2dc 1281 bilukdc 1287 reuhypd 4203 opelresi 4623 iota1 4881 funbrfv2b 5218 dffn5im 5219 fneqeql 5275 f1ompt 5320 dff13 5407 fliftcnv 5435 isotr 5456 isoini 5457 caovord3 5674 releldm2 5811 tpostpos 5879 nnaordi 6081 iserd 6132 ecdmn0m 6148 qliftel 6186 qliftfun 6188 qliftf 6191 ecopovsym 6202 recmulnqg 6489 nqtri3or 6494 ltmnqg 6499 mullocprlem 6668 addextpr 6719 gt0srpr 6833 ltsosr 6849 ltasrg 6855 xrlenlt 7084 letri3 7099 subadd 7214 ltsubadd2 7428 lesubadd2 7430 suble 7435 ltsub23 7437 ltaddpos2 7448 ltsubpos 7449 subge02 7473 ltaddsublt 7562 reapneg 7588 apsym 7597 apti 7613 leltap 7615 ap0gt0 7629 divmulap 7654 divmulap3 7656 rec11rap 7687 ltdiv1 7834 ltdivmul2 7844 ledivmul2 7846 ltrec 7849 nnle1eq1 7938 avgle1 8165 avgle2 8166 nn0le0eq0 8210 znnnlt1 8293 zleltp1 8299 elz2 8312 uzm1 8503 uzin 8505 difrp 8619 xrletri3 8721 xltnegi 8748 elioo5 8802 elfz5 8882 fzdifsuc 8943 elfzm11 8953 uzsplit 8954 elfzonelfzo 9086 qtri3or 9098 flqbi 9132 flqbi2 9133 sqap0 9320 lt2sq 9327 le2sq 9328 shftfib 9424 mulreap 9464 caucvgrelemcau 9579 caucvgre 9580 elicc4abs 9690 abs2difabs 9704 cau4 9712 clim2 9804 climeq 9820 algcvgblem 9888 |
Copyright terms: Public domain | W3C validator |