Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpanr2 GIF version

Theorem mpanr2 414
 Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanr2.1 𝜒
mpanr2.2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Assertion
Ref Expression
mpanr2 ((𝜑𝜓) → 𝜃)

Proof of Theorem mpanr2
StepHypRef Expression
1 mpanr2.1 . . 3 𝜒
21jctr 298 . 2 (𝜓 → (𝜓𝜒))
3 mpanr2.2 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
42, 3sylan2 270 1 ((𝜑𝜓) → 𝜃)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101 This theorem is referenced by:  op1steq  5805  prarloclemarch2  6517  prarloclemlt  6591  prsradd  6870  muleqadd  7649  divdivap1  7699  addltmul  8161  elfzp1b  8959  elfzm1b  8960  expp1zap  9303  expm1ap  9304
 Copyright terms: Public domain W3C validator