ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctr Structured version   GIF version

Theorem jctr 298
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
Hypothesis
Ref Expression
jctl.1 ψ
Assertion
Ref Expression
jctr (φ → (φ ψ))

Proof of Theorem jctr
StepHypRef Expression
1 id 19 . 2 (φφ)
2 jctl.1 . 2 ψ
31, 2jctir 296 1 (φ → (φ ψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  mpanl2  411  mpanr2  414  bm1.1  2022  undifss  3297  brprcneu  5114  mpt2eq12  5507  tfri3  5894  ige2m2fzo  8784
  Copyright terms: Public domain W3C validator