ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctir Structured version   GIF version

Theorem jctir 296
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (φψ)
jctil.2 χ
Assertion
Ref Expression
jctir (φ → (ψ χ))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (φψ)
2 jctil.2 . . 3 χ
32a1i 9 . 2 (φχ)
41, 3jca 290 1 (φ → (ψ χ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  jctr  298  equvini  1638  funtp  4895  foimacnv  5087  respreima  5238  fpr  5288  dmtpos  5812  ssdomg  6194  archnqq  6400  recexgt0sr  6681  ige2m2fzo  8804
  Copyright terms: Public domain W3C validator