![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1onn | GIF version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn | ⊢ 1𝑜 ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6001 | . 2 ⊢ 1𝑜 = suc ∅ | |
2 | peano1 4317 | . . 3 ⊢ ∅ ∈ ω | |
3 | peano2 4318 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
4 | 2, 3 | ax-mp 7 | . 2 ⊢ suc ∅ ∈ ω |
5 | 1, 4 | eqeltri 2110 | 1 ⊢ 1𝑜 ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 ∅c0 3224 suc csuc 4102 ωcom 4313 1𝑜c1o 5994 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-uni 3581 df-int 3616 df-suc 4108 df-iom 4314 df-1o 6001 |
This theorem is referenced by: 2onn 6094 nnm2 6098 nnaordex 6100 snfig 6291 snnen2og 6322 1pi 6413 1lt2pi 6438 indpi 6440 archnqq 6515 nq0m0r 6554 nq02m 6563 prarloclemlt 6591 prarloclemlo 6592 |
Copyright terms: Public domain | W3C validator |