ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elexi Structured version   GIF version

Theorem elexi 2561
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
elisseti.1 A B
Assertion
Ref Expression
elexi A V

Proof of Theorem elexi
StepHypRef Expression
1 elisseti.1 . 2 A B
2 elex 2560 . 2 (A BA V)
31, 2ax-mp 7 1 A V
Colors of variables: wff set class
Syntax hints:   wcel 1390  Vcvv 2551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553
This theorem is referenced by:  onunisuci  4135  ordsoexmid  4240  fnoei  5971  oeiexg  5972  endisj  6234  indpi  6326  prarloclemarch2  6402  prarloclemlt  6475  opelreal  6686  elreal  6687  elreal2  6688  eqresr  6693  c0ex  6779  1ex  6780  2ex  7727  3ex  7731  pnfex  8423  elxr  8426
  Copyright terms: Public domain W3C validator