Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclem3step Structured version   GIF version

Theorem prarloclem3step 6344
 Description: Induction step for prarloclem3 6345. (Contributed by Jim Kingdon, 9-Nov-2019.)
Assertion
Ref Expression
prarloclem3step (((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)) → y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))
Distinct variable groups:   y,A   y,𝐿   y,𝑃   y,𝑈   y,𝑋

Proof of Theorem prarloclem3step
StepHypRef Expression
1 nfv 1398 . . 3 y(𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q))
2 nfre1 2339 . . 3 yy 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)
3 prarloclemlo 6342 . . . . 5 (((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) y 𝜔) → ((A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝐿 → (((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))))
4 prarloclemup 6343 . . . . 5 (((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) y 𝜔) → ((A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈 → (((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))))
5 prarloclemlt 6341 . . . . . 6 (((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) y 𝜔) → (A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))
6 prloc 6339 . . . . . . . . 9 ((⟨𝐿, 𝑈 P (A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))) → ((A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))
76ex 108 . . . . . . . 8 (⟨𝐿, 𝑈 P → ((A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) → ((A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)))
873ad2ant1 911 . . . . . . 7 ((⟨𝐿, 𝑈 P A 𝐿 𝑃 Q) → ((A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) → ((A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)))
98ad2antlr 462 . . . . . 6 (((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) y 𝜔) → ((A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) → ((A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)))
105, 9mpd 13 . . . . 5 (((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) y 𝜔) → ((A +Q ([⟨(y +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))
113, 4, 10mpjaod 625 . . . 4 (((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) y 𝜔) → (((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)))
1211ex 108 . . 3 ((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) → (y 𝜔 → (((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))))
131, 2, 12rexlimd 2404 . 2 ((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) → (y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈) → y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)))
1413imp 115 1 (((𝑋 𝜔 (⟨𝐿, 𝑈 P A 𝐿 𝑃 Q)) y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈)) → y 𝜔 ((A +Q0 ([⟨y, 1𝑜⟩] ~Q0 ·Q0 𝑃)) 𝐿 (A +Q ([⟨((y +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) 𝑈))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∨ wo 616   ∧ w3a 871   ∈ wcel 1370  ∃wrex 2281  ⟨cop 3349   class class class wbr 3734  suc csuc 4047  𝜔com 4236  (class class class)co 5432  1𝑜c1o 5905  2𝑜c2o 5906   +𝑜 coa 5909  [cec 6011   ~Q ceq 6133  Qcnq 6134   +Q cplq 6136   ·Q cmq 6137
 Copyright terms: Public domain W3C validator