Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpcomeng | GIF version |
Description: Commutative law for equinumerosity of Cartesian product. Proposition 4.22(d) of [Mendelson] p. 254. (Contributed by NM, 27-Mar-2006.) |
Ref | Expression |
---|---|
xpcomeng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4359 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 × 𝑦) = (𝐴 × 𝑦)) | |
2 | xpeq2 4360 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴)) | |
3 | 1, 2 | breq12d 3777 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 × 𝑦) ≈ (𝑦 × 𝑥) ↔ (𝐴 × 𝑦) ≈ (𝑦 × 𝐴))) |
4 | xpeq2 4360 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 × 𝑦) = (𝐴 × 𝐵)) | |
5 | xpeq1 4359 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴)) | |
6 | 4, 5 | breq12d 3777 | . 2 ⊢ (𝑦 = 𝐵 → ((𝐴 × 𝑦) ≈ (𝑦 × 𝐴) ↔ (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))) |
7 | vex 2560 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 2560 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | xpcomen 6301 | . 2 ⊢ (𝑥 × 𝑦) ≈ (𝑦 × 𝑥) |
10 | 3, 6, 9 | vtocl2g 2617 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 class class class wbr 3764 × cxp 4343 ≈ cen 6219 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-1st 5767 df-2nd 5768 df-en 6222 |
This theorem is referenced by: xpsnen2g 6303 xpdom1g 6307 |
Copyright terms: Public domain | W3C validator |