ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemnbj GIF version

Theorem caucvgprlemnbj 6765
Description: Lemma for caucvgpr 6780. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgprlemnbj.b (𝜑𝐵N)
caucvgprlemnbj.j (𝜑𝐽N)
Assertion
Ref Expression
caucvgprlemnbj (𝜑 → ¬ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (𝐹𝐽))
Distinct variable groups:   𝐵,𝑘,𝑛   𝑘,𝐹,𝑛   𝑘,𝐽,𝑛
Allowed substitution hints:   𝜑(𝑘,𝑛)

Proof of Theorem caucvgprlemnbj
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.cau . . . . . . 7 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
2 caucvgprlemnbj.b . . . . . . . 8 (𝜑𝐵N)
3 caucvgprlemnbj.j . . . . . . . 8 (𝜑𝐽N)
4 breq1 3767 . . . . . . . . . 10 (𝑛 = 𝐵 → (𝑛 <N 𝑘𝐵 <N 𝑘))
5 fveq2 5178 . . . . . . . . . . . 12 (𝑛 = 𝐵 → (𝐹𝑛) = (𝐹𝐵))
6 opeq1 3549 . . . . . . . . . . . . . . 15 (𝑛 = 𝐵 → ⟨𝑛, 1𝑜⟩ = ⟨𝐵, 1𝑜⟩)
76eceq1d 6142 . . . . . . . . . . . . . 14 (𝑛 = 𝐵 → [⟨𝑛, 1𝑜⟩] ~Q = [⟨𝐵, 1𝑜⟩] ~Q )
87fveq2d 5182 . . . . . . . . . . . . 13 (𝑛 = 𝐵 → (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))
98oveq2d 5528 . . . . . . . . . . . 12 (𝑛 = 𝐵 → ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) = ((𝐹𝑘) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))
105, 9breq12d 3777 . . . . . . . . . . 11 (𝑛 = 𝐵 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ↔ (𝐹𝐵) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))
115, 8oveq12d 5530 . . . . . . . . . . . 12 (𝑛 = 𝐵 → ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) = ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))
1211breq2d 3776 . . . . . . . . . . 11 (𝑛 = 𝐵 → ((𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ↔ (𝐹𝑘) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))
1310, 12anbi12d 442 . . . . . . . . . 10 (𝑛 = 𝐵 → (((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ))) ↔ ((𝐹𝐵) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))))
144, 13imbi12d 223 . . . . . . . . 9 (𝑛 = 𝐵 → ((𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) ↔ (𝐵 <N 𝑘 → ((𝐹𝐵) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))))
15 breq2 3768 . . . . . . . . . 10 (𝑘 = 𝐽 → (𝐵 <N 𝑘𝐵 <N 𝐽))
16 fveq2 5178 . . . . . . . . . . . . 13 (𝑘 = 𝐽 → (𝐹𝑘) = (𝐹𝐽))
1716oveq1d 5527 . . . . . . . . . . . 12 (𝑘 = 𝐽 → ((𝐹𝑘) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) = ((𝐹𝐽) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))
1817breq2d 3776 . . . . . . . . . . 11 (𝑘 = 𝐽 → ((𝐹𝐵) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ↔ (𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))
1916breq1d 3774 . . . . . . . . . . 11 (𝑘 = 𝐽 → ((𝐹𝑘) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ↔ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))
2018, 19anbi12d 442 . . . . . . . . . 10 (𝑘 = 𝐽 → (((𝐹𝐵) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))) ↔ ((𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))))
2115, 20imbi12d 223 . . . . . . . . 9 (𝑘 = 𝐽 → ((𝐵 <N 𝑘 → ((𝐹𝐵) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))) ↔ (𝐵 <N 𝐽 → ((𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))))
2214, 21rspc2v 2662 . . . . . . . 8 ((𝐵N𝐽N) → (∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) → (𝐵 <N 𝐽 → ((𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))))
232, 3, 22syl2anc 391 . . . . . . 7 (𝜑 → (∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) → (𝐵 <N 𝐽 → ((𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))))
241, 23mpd 13 . . . . . 6 (𝜑 → (𝐵 <N 𝐽 → ((𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))))
2524imp 115 . . . . 5 ((𝜑𝐵 <N 𝐽) → ((𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))
2625simprd 107 . . . 4 ((𝜑𝐵 <N 𝐽) → (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))
27 caucvgpr.f . . . . . . . 8 (𝜑𝐹:NQ)
2827, 2ffvelrnd 5303 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ Q)
29 nnnq 6520 . . . . . . . 8 (𝐵N → [⟨𝐵, 1𝑜⟩] ~QQ)
30 recclnq 6490 . . . . . . . 8 ([⟨𝐵, 1𝑜⟩] ~QQ → (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ) ∈ Q)
312, 29, 303syl 17 . . . . . . 7 (𝜑 → (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ) ∈ Q)
32 addclnq 6473 . . . . . . 7 (((𝐹𝐵) ∈ Q ∧ (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ) ∈ Q) → ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∈ Q)
3328, 31, 32syl2anc 391 . . . . . 6 (𝜑 → ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∈ Q)
34 nnnq 6520 . . . . . . 7 (𝐽N → [⟨𝐽, 1𝑜⟩] ~QQ)
35 recclnq 6490 . . . . . . 7 ([⟨𝐽, 1𝑜⟩] ~QQ → (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) ∈ Q)
363, 34, 353syl 17 . . . . . 6 (𝜑 → (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) ∈ Q)
37 ltaddnq 6505 . . . . . 6 ((((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) ∈ Q) → ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
3833, 36, 37syl2anc 391 . . . . 5 (𝜑 → ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
3938adantr 261 . . . 4 ((𝜑𝐵 <N 𝐽) → ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
40 ltsonq 6496 . . . . 5 <Q Or Q
41 ltrelnq 6463 . . . . 5 <Q ⊆ (Q × Q)
4240, 41sotri 4720 . . . 4 (((𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∧ ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))) → (𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
4326, 39, 42syl2anc 391 . . 3 ((𝜑𝐵 <N 𝐽) → (𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
44 ltaddnq 6505 . . . . . . 7 (((𝐹𝐵) ∈ Q ∧ (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ) ∈ Q) → (𝐹𝐵) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))
4528, 31, 44syl2anc 391 . . . . . 6 (𝜑 → (𝐹𝐵) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))
4645adantr 261 . . . . 5 ((𝜑𝐵 = 𝐽) → (𝐹𝐵) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))
47 fveq2 5178 . . . . . . 7 (𝐵 = 𝐽 → (𝐹𝐵) = (𝐹𝐽))
4847breq1d 3774 . . . . . 6 (𝐵 = 𝐽 → ((𝐹𝐵) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ↔ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))
4948adantl 262 . . . . 5 ((𝜑𝐵 = 𝐽) → ((𝐹𝐵) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ↔ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q ))))
5046, 49mpbid 135 . . . 4 ((𝜑𝐵 = 𝐽) → (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )))
5138adantr 261 . . . 4 ((𝜑𝐵 = 𝐽) → ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
5250, 51, 42syl2anc 391 . . 3 ((𝜑𝐵 = 𝐽) → (𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
53 breq1 3767 . . . . . . . . . 10 (𝑛 = 𝐽 → (𝑛 <N 𝑘𝐽 <N 𝑘))
54 fveq2 5178 . . . . . . . . . . . 12 (𝑛 = 𝐽 → (𝐹𝑛) = (𝐹𝐽))
55 opeq1 3549 . . . . . . . . . . . . . . 15 (𝑛 = 𝐽 → ⟨𝑛, 1𝑜⟩ = ⟨𝐽, 1𝑜⟩)
5655eceq1d 6142 . . . . . . . . . . . . . 14 (𝑛 = 𝐽 → [⟨𝑛, 1𝑜⟩] ~Q = [⟨𝐽, 1𝑜⟩] ~Q )
5756fveq2d 5182 . . . . . . . . . . . . 13 (𝑛 = 𝐽 → (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))
5857oveq2d 5528 . . . . . . . . . . . 12 (𝑛 = 𝐽 → ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) = ((𝐹𝑘) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
5954, 58breq12d 3777 . . . . . . . . . . 11 (𝑛 = 𝐽 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ↔ (𝐹𝐽) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))
6054, 57oveq12d 5530 . . . . . . . . . . . 12 (𝑛 = 𝐽 → ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) = ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
6160breq2d 3776 . . . . . . . . . . 11 (𝑛 = 𝐽 → ((𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ↔ (𝐹𝑘) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))
6259, 61anbi12d 442 . . . . . . . . . 10 (𝑛 = 𝐽 → (((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ))) ↔ ((𝐹𝐽) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))))
6353, 62imbi12d 223 . . . . . . . . 9 (𝑛 = 𝐽 → ((𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) ↔ (𝐽 <N 𝑘 → ((𝐹𝐽) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))))
64 breq2 3768 . . . . . . . . . 10 (𝑘 = 𝐵 → (𝐽 <N 𝑘𝐽 <N 𝐵))
65 fveq2 5178 . . . . . . . . . . . . 13 (𝑘 = 𝐵 → (𝐹𝑘) = (𝐹𝐵))
6665oveq1d 5527 . . . . . . . . . . . 12 (𝑘 = 𝐵 → ((𝐹𝑘) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) = ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
6766breq2d 3776 . . . . . . . . . . 11 (𝑘 = 𝐵 → ((𝐹𝐽) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ↔ (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))
6865breq1d 3774 . . . . . . . . . . 11 (𝑘 = 𝐵 → ((𝐹𝑘) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ↔ (𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))
6967, 68anbi12d 442 . . . . . . . . . 10 (𝑘 = 𝐵 → (((𝐹𝐽) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))) ↔ ((𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))))
7064, 69imbi12d 223 . . . . . . . . 9 (𝑘 = 𝐵 → ((𝐽 <N 𝑘 → ((𝐹𝐽) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))) ↔ (𝐽 <N 𝐵 → ((𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))))
7163, 70rspc2v 2662 . . . . . . . 8 ((𝐽N𝐵N) → (∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) → (𝐽 <N 𝐵 → ((𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))))
723, 2, 71syl2anc 391 . . . . . . 7 (𝜑 → (∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))) → (𝐽 <N 𝐵 → ((𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))))
731, 72mpd 13 . . . . . 6 (𝜑 → (𝐽 <N 𝐵 → ((𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))))
7473imp 115 . . . . 5 ((𝜑𝐽 <N 𝐵) → ((𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (𝐹𝐵) <Q ((𝐹𝐽) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))
7574simpld 105 . . . 4 ((𝜑𝐽 <N 𝐵) → (𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
76 ltanqg 6498 . . . . . . . 8 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
7776adantl 262 . . . . . . 7 ((𝜑 ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
78 addcomnqg 6479 . . . . . . . 8 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
7978adantl 262 . . . . . . 7 ((𝜑 ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
8077, 28, 33, 36, 79caovord2d 5670 . . . . . 6 (𝜑 → ((𝐹𝐵) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ↔ ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))))
8145, 80mpbid 135 . . . . 5 (𝜑 → ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
8281adantr 261 . . . 4 ((𝜑𝐽 <N 𝐵) → ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
8340, 41sotri 4720 . . . 4 (((𝐹𝐽) <Q ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ ((𝐹𝐵) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ))) → (𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
8475, 82, 83syl2anc 391 . . 3 ((𝜑𝐽 <N 𝐵) → (𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
85 pitri3or 6420 . . . 4 ((𝐵N𝐽N) → (𝐵 <N 𝐽𝐵 = 𝐽𝐽 <N 𝐵))
862, 3, 85syl2anc 391 . . 3 (𝜑 → (𝐵 <N 𝐽𝐵 = 𝐽𝐽 <N 𝐵))
8743, 52, 84, 86mpjao3dan 1202 . 2 (𝜑 → (𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )))
8827, 3ffvelrnd 5303 . . . 4 (𝜑 → (𝐹𝐽) ∈ Q)
89 addclnq 6473 . . . . 5 ((((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) ∈ Q) → (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∈ Q)
9033, 36, 89syl2anc 391 . . . 4 (𝜑 → (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∈ Q)
91 so2nr 4058 . . . . 5 (( <Q Or Q ∧ ((𝐹𝐽) ∈ Q ∧ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∈ Q)) → ¬ ((𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (𝐹𝐽)))
9240, 91mpan 400 . . . 4 (((𝐹𝐽) ∈ Q ∧ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∈ Q) → ¬ ((𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (𝐹𝐽)))
9388, 90, 92syl2anc 391 . . 3 (𝜑 → ¬ ((𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (𝐹𝐽)))
94 imnan 624 . . 3 (((𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) → ¬ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (𝐹𝐽)) ↔ ¬ ((𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) ∧ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (𝐹𝐽)))
9593, 94sylibr 137 . 2 (𝜑 → ((𝐹𝐽) <Q (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) → ¬ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (𝐹𝐽)))
9687, 95mpd 13 1 (𝜑 → ¬ (((𝐹𝐵) +Q (*Q‘[⟨𝐵, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )) <Q (𝐹𝐽))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  w3o 884  w3a 885   = wceq 1243  wcel 1393  wral 2306  cop 3378   class class class wbr 3764   Or wor 4032  wf 4898  cfv 4902  (class class class)co 5512  1𝑜c1o 5994  [cec 6104  Ncnpi 6370   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380  *Qcrq 6382   <Q cltq 6383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451
This theorem is referenced by:  caucvgprlemladdrl  6776
  Copyright terms: Public domain W3C validator