ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemladdrl GIF version

Theorem caucvgprlemladdrl 6776
Description: Lemma for caucvgpr 6780. Adding 𝑆 after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemladd.s (𝜑𝑆Q)
Assertion
Ref Expression
caucvgprlemladdrl (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑢,𝑙   𝑛,𝐹,𝑘   𝑘,𝐿,𝑗   𝑆,𝑙,𝑢,𝑗   𝑗,𝑘,𝑆
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑆(𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlemladdrl
Dummy variables 𝑟 𝑓 𝑔 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3549 . . . . . . . . 9 (𝑗 = 𝑎 → ⟨𝑗, 1𝑜⟩ = ⟨𝑎, 1𝑜⟩)
21eceq1d 6142 . . . . . . . 8 (𝑗 = 𝑎 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝑎, 1𝑜⟩] ~Q )
32fveq2d 5182 . . . . . . 7 (𝑗 = 𝑎 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))
43oveq2d 5528 . . . . . 6 (𝑗 = 𝑎 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )))
5 fveq2 5178 . . . . . . 7 (𝑗 = 𝑎 → (𝐹𝑗) = (𝐹𝑎))
65oveq1d 5527 . . . . . 6 (𝑗 = 𝑎 → ((𝐹𝑗) +Q 𝑆) = ((𝐹𝑎) +Q 𝑆))
74, 6breq12d 3777 . . . . 5 (𝑗 = 𝑎 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆) ↔ (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
87cbvrexv 2534 . . . 4 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆))
98a1i 9 . . 3 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆) ↔ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
109rabbiia 2547 . 2 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} = {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)}
11 oveq1 5519 . . . . . . 7 (𝑙 = 𝑟 → (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) = (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )))
1211breq1d 3774 . . . . . 6 (𝑙 = 𝑟 → ((𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) ↔ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
1312rexbidv 2327 . . . . 5 (𝑙 = 𝑟 → (∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) ↔ ∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
1413elrab 2698 . . . 4 (𝑟 ∈ {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)} ↔ (𝑟Q ∧ ∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)))
15 caucvgpr.f . . . . . . . . . . . . . . 15 (𝜑𝐹:NQ)
1615ad4antr 463 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝐹:NQ)
17 caucvgpr.cau . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
1817ad4antr 463 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
19 simpr 103 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝑏N)
20 simpllr 486 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝑎N)
2116, 18, 19, 20caucvgprlemnbj 6765 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ¬ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎))
2215ad3antrrr 461 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝐹:NQ)
2322ffvelrnda 5302 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (𝐹𝑏) ∈ Q)
24 nnnq 6520 . . . . . . . . . . . . . . . . . 18 (𝑏N → [⟨𝑏, 1𝑜⟩] ~QQ)
25 recclnq 6490 . . . . . . . . . . . . . . . . . 18 ([⟨𝑏, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
2619, 24, 253syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q)
27 addclnq 6473 . . . . . . . . . . . . . . . . 17 (((𝐹𝑏) ∈ Q ∧ (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ) ∈ Q) → ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q)
2823, 26, 27syl2anc 391 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q)
29 nnnq 6520 . . . . . . . . . . . . . . . . 17 (𝑎N → [⟨𝑎, 1𝑜⟩] ~QQ)
30 recclnq 6490 . . . . . . . . . . . . . . . . 17 ([⟨𝑎, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ∈ Q)
3120, 29, 303syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ∈ Q)
32 caucvgprlemladd.s . . . . . . . . . . . . . . . . 17 (𝜑𝑆Q)
3332ad4antr 463 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → 𝑆Q)
34 addassnqg 6480 . . . . . . . . . . . . . . . 16 ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ∈ Q𝑆Q) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) +Q 𝑆) = (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) +Q 𝑆)))
3528, 31, 33, 34syl3anc 1135 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) +Q 𝑆) = (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) +Q 𝑆)))
3635breq1d 3774 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) +Q 𝑆) <Q ((𝐹𝑎) +Q 𝑆) ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) +Q 𝑆)) <Q ((𝐹𝑎) +Q 𝑆)))
37 ltanqg 6498 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3837adantl 262 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
39 addclnq 6473 . . . . . . . . . . . . . . . 16 ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ∈ Q) → (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ Q)
4028, 31, 39syl2anc 391 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ Q)
4116, 20ffvelrnd 5303 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (𝐹𝑎) ∈ Q)
42 addcomnqg 6479 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4342adantl 262 . . . . . . . . . . . . . . 15 ((((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4438, 40, 41, 33, 43caovord2d 5670 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎) ↔ ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) +Q 𝑆) <Q ((𝐹𝑎) +Q 𝑆)))
45 addcomnqg 6479 . . . . . . . . . . . . . . . . 17 ((𝑆Q ∧ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) = ((*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) +Q 𝑆))
4633, 31, 45syl2anc 391 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) = ((*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) +Q 𝑆))
4746oveq2d 5528 . . . . . . . . . . . . . . 15 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) = (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) +Q 𝑆)))
4847breq1d 3774 . . . . . . . . . . . . . 14 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆) ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q ((*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) +Q 𝑆)) <Q ((𝐹𝑎) +Q 𝑆)))
4936, 44, 483bitr4rd 210 . . . . . . . . . . . . 13 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆) ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q (𝐹𝑎)))
5021, 49mtbird 598 . . . . . . . . . . . 12 (((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) ∧ 𝑏N) → ¬ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆))
5150nrexdv 2412 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ¬ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆))
5251intnand 840 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ¬ (((𝐹𝑎) +Q 𝑆) ∈ Q ∧ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
5317ad3antrrr 461 . . . . . . . . . . . . 13 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
54 caucvgpr.bnd . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
55 fveq2 5178 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑏 → (𝐹𝑗) = (𝐹𝑏))
5655breq2d 3776 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑏 → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹𝑏)))
5756cbvralv 2533 . . . . . . . . . . . . . . 15 (∀𝑗N 𝐴 <Q (𝐹𝑗) ↔ ∀𝑏N 𝐴 <Q (𝐹𝑏))
5854, 57sylib 127 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑏N 𝐴 <Q (𝐹𝑏))
5958ad3antrrr 461 . . . . . . . . . . . . 13 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ∀𝑏N 𝐴 <Q (𝐹𝑏))
60 caucvgpr.lim . . . . . . . . . . . . . 14 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
61 opeq1 3549 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑏 → ⟨𝑗, 1𝑜⟩ = ⟨𝑏, 1𝑜⟩)
6261eceq1d 6142 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑏 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨𝑏, 1𝑜⟩] ~Q )
6362fveq2d 5182 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑏 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝑏, 1𝑜⟩] ~Q ))
6463oveq2d 5528 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑏 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑙 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
6564, 55breq12d 3777 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑏 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑙 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝐹𝑏)))
6665cbvrexv 2534 . . . . . . . . . . . . . . . . 17 (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝐹𝑏))
6766a1i 9 . . . . . . . . . . . . . . . 16 (𝑙Q → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝐹𝑏)))
6867rabbiia 2547 . . . . . . . . . . . . . . 15 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} = {𝑙Q ∣ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝐹𝑏)}
6955, 63oveq12d 5530 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑏 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )))
7069breq1d 3774 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑏 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑢))
7170cbvrexv 2534 . . . . . . . . . . . . . . . . 17 (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑢)
7271a1i 9 . . . . . . . . . . . . . . . 16 (𝑢Q → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑢))
7372rabbiia 2547 . . . . . . . . . . . . . . 15 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} = {𝑢Q ∣ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑢}
7468, 73opeq12i 3554 . . . . . . . . . . . . . 14 ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ = ⟨{𝑙Q ∣ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝐹𝑏)}, {𝑢Q ∣ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
7560, 74eqtri 2060 . . . . . . . . . . . . 13 𝐿 = ⟨{𝑙Q ∣ ∃𝑏N (𝑙 +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q (𝐹𝑏)}, {𝑢Q ∣ ∃𝑏N ((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
7632ad3antrrr 461 . . . . . . . . . . . . . 14 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑆Q)
7729, 30syl 14 . . . . . . . . . . . . . . 15 (𝑎N → (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ∈ Q)
7877ad2antlr 458 . . . . . . . . . . . . . 14 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ∈ Q)
79 addclnq 6473 . . . . . . . . . . . . . 14 ((𝑆Q ∧ (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ Q)
8076, 78, 79syl2anc 391 . . . . . . . . . . . . 13 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ Q)
8122, 53, 59, 75, 80caucvgprlemladdfu 6775 . . . . . . . . . . . 12 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)) ⊆ {𝑢Q ∣ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q 𝑢})
8281sseld 2944 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)) → ((𝐹𝑎) +Q 𝑆) ∈ {𝑢Q ∣ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q 𝑢}))
83 breq2 3768 . . . . . . . . . . . . 13 (𝑢 = ((𝐹𝑎) +Q 𝑆) → ((((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q 𝑢 ↔ (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
8483rexbidv 2327 . . . . . . . . . . . 12 (𝑢 = ((𝐹𝑎) +Q 𝑆) → (∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q 𝑢 ↔ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
8584elrab 2698 . . . . . . . . . . 11 (((𝐹𝑎) +Q 𝑆) ∈ {𝑢Q ∣ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q 𝑢} ↔ (((𝐹𝑎) +Q 𝑆) ∈ Q ∧ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆)))
8682, 85syl6ib 150 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)) → (((𝐹𝑎) +Q 𝑆) ∈ Q ∧ ∃𝑏N (((𝐹𝑏) +Q (*Q‘[⟨𝑏, 1𝑜⟩] ~Q )) +Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))) <Q ((𝐹𝑎) +Q 𝑆))))
8752, 86mtod 589 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ¬ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)))
8815, 17, 54, 60caucvgprlemcl 6774 . . . . . . . . . . . 12 (𝜑𝐿P)
8988ad3antrrr 461 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝐿P)
90 nqprlu 6645 . . . . . . . . . . . 12 ((𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ Q → ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ ∈ P)
9180, 90syl 14 . . . . . . . . . . 11 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ ∈ P)
92 addclpr 6635 . . . . . . . . . . 11 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) ∈ P)
9389, 91, 92syl2anc 391 . . . . . . . . . 10 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) ∈ P)
94 prop 6573 . . . . . . . . . . 11 ((𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩))⟩ ∈ P)
95 prloc 6589 . . . . . . . . . . 11 ((⟨(1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)), (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩))⟩ ∈ P ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)) ∨ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩))))
9694, 95sylan 267 . . . . . . . . . 10 (((𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) ∈ P ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)) ∨ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩))))
9793, 96sylancom 397 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)) ∨ ((𝐹𝑎) +Q 𝑆) ∈ (2nd ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩))))
9887, 97ecased 1239 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)))
99 simpllr 486 . . . . . . . . 9 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑟Q)
10089, 76, 99, 78caucvgprlemcanl 6742 . . . . . . . 8 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → ((𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)) ↔ 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
10198, 100mpbid 135 . . . . . . 7 ((((𝜑𝑟Q) ∧ 𝑎N) ∧ (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
102101ex 108 . . . . . 6 (((𝜑𝑟Q) ∧ 𝑎N) → ((𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
103102rexlimdva 2433 . . . . 5 ((𝜑𝑟Q) → (∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
104103expimpd 345 . . . 4 (𝜑 → ((𝑟Q ∧ ∃𝑎N (𝑟 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)) → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
10514, 104syl5bi 141 . . 3 (𝜑 → (𝑟 ∈ {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)} → 𝑟 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
106105ssrdv 2951 . 2 (𝜑 → {𝑙Q ∣ ∃𝑎N (𝑙 +Q (*Q‘[⟨𝑎, 1𝑜⟩] ~Q )) <Q ((𝐹𝑎) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
10710, 106syl5eqss 2989 1 (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑆)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629  w3a 885   = wceq 1243  wcel 1393  {cab 2026  wral 2306  wrex 2307  {crab 2310  wss 2917  cop 3378   class class class wbr 3764  wf 4898  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  1𝑜c1o 5994  [cec 6104  Ncnpi 6370   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380  *Qcrq 6382   <Q cltq 6383  Pcnp 6389   +P cpp 6391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-iltp 6568
This theorem is referenced by:  caucvgprlem1  6777
  Copyright terms: Public domain W3C validator