Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclpr GIF version

 Description: Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
addclpr ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)

Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑔 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iplp 6566 . . . 4 +P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}⟩)
21genpelxp 6609 . . 3 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q))
3 addclnq 6473 . . . 4 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
41, 3genpml 6615 . . 3 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)))
51, 3genpmu 6616 . . 3 ((𝐴P𝐵P) → ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))
62, 4, 5jca32 293 . 2 ((𝐴P𝐵P) → ((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
7 ltanqg 6498 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧 +Q 𝑥) <Q (𝑧 +Q 𝑦)))
8 addcomnqg 6479 . . . . 5 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥))
9 addnqprl 6627 . . . . 5 ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (1st ‘(𝐴 +P 𝐵))))
101, 3, 7, 8, 9genprndl 6619 . . . 4 ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))))
11 addnqpru 6628 . . . . 5 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔 +Q ) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴 +P 𝐵))))
121, 3, 7, 8, 11genprndu 6620 . . . 4 ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵)))))
1310, 12jca 290 . . 3 ((𝐴P𝐵P) → (∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))))
141, 3, 7, 8genpdisj 6621 . . 3 ((𝐴P𝐵P) → ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))
15 addlocpr 6634 . . 3 ((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
1613, 14, 153jca 1084 . 2 ((𝐴P𝐵P) → ((∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵))))))
17 elnp1st2nd 6574 . 2 ((𝐴 +P 𝐵) ∈ P ↔ (((𝐴 +P 𝐵) ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞Q 𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ∃𝑟Q 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))) ∧ ((∀𝑞Q (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴 +P 𝐵)))) ∧ ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))))) ∧ ∀𝑞Q ¬ (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴 +P 𝐵))) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))))
186, 16, 17sylanbrc 394 1 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ↔ wb 98   ∨ wo 629   ∧ w3a 885   ∈ wcel 1393  ∀wral 2306  ∃wrex 2307  𝒫 cpw 3359   class class class wbr 3764   × cxp 4343  ‘cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378   +Q cplq 6380
 Copyright terms: Public domain W3C validator