ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgt0sr GIF version

Theorem mulgt0sr 6862
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
mulgt0sr ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))

Proof of Theorem mulgt0sr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 6823 . . . . 5 <R ⊆ (R × R)
21brel 4392 . . . 4 (0R <R 𝐴 → (0RR𝐴R))
32simprd 107 . . 3 (0R <R 𝐴𝐴R)
41brel 4392 . . . 4 (0R <R 𝐵 → (0RR𝐵R))
54simprd 107 . . 3 (0R <R 𝐵𝐵R)
63, 5anim12i 321 . 2 ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴R𝐵R))
7 df-nr 6812 . . 3 R = ((P × P) / ~R )
8 breq2 3768 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R [⟨𝑥, 𝑦⟩] ~R ↔ 0R <R 𝐴))
98anbi1d 438 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R )))
10 oveq1 5519 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))
1110breq2d 3776 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )))
129, 11imbi12d 223 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))))
13 breq2 3768 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R [⟨𝑧, 𝑤⟩] ~R ↔ 0R <R 𝐵))
1413anbi2d 437 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R 𝐵)))
15 oveq2 5520 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R 𝐵))
1615breq2d 3776 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R 𝐵)))
1714, 16imbi12d 223 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))))
18 gt0srpr 6833 . . . . 5 (0R <R [⟨𝑥, 𝑦⟩] ~R𝑦<P 𝑥)
19 gt0srpr 6833 . . . . 5 (0R <R [⟨𝑧, 𝑤⟩] ~R𝑤<P 𝑧)
2018, 19anbi12i 433 . . . 4 ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝑦<P 𝑥𝑤<P 𝑧))
21 ltexpri 6711 . . . . . . 7 (𝑦<P 𝑥 → ∃𝑣P (𝑦 +P 𝑣) = 𝑥)
22 ltexpri 6711 . . . . . . . . 9 (𝑤<P 𝑧 → ∃𝑢P (𝑤 +P 𝑢) = 𝑧)
23 addclpr 6635 . . . . . . . . . . . . . 14 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
2423adantl 262 . . . . . . . . . . . . 13 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) ∈ P)
25 simplrr 488 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 +P 𝑣) = 𝑥)
26 simplr 482 . . . . . . . . . . . . . . . . 17 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑦P)
2726ad2antrr 457 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑦P)
28 simplrl 487 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑣P)
2924, 27, 28caovcld 5654 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 +P 𝑣) ∈ P)
3025, 29eqeltrrd 2115 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑥P)
31 simplrr 488 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → 𝑤P)
3231adantr 261 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑤P)
33 mulclpr 6670 . . . . . . . . . . . . . 14 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
3430, 32, 33syl2anc 391 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑥 ·P 𝑤) ∈ P)
35 simplrl 487 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → 𝑧P)
3635adantr 261 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑧P)
37 mulclpr 6670 . . . . . . . . . . . . . 14 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
3827, 36, 37syl2anc 391 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑧) ∈ P)
3924, 34, 38caovcld 5654 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
40 simprl 483 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → 𝑢P)
41 mulclpr 6670 . . . . . . . . . . . . 13 ((𝑣P𝑢P) → (𝑣 ·P 𝑢) ∈ P)
4228, 40, 41syl2anc 391 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑣 ·P 𝑢) ∈ P)
43 ltaddpr 6695 . . . . . . . . . . . 12 ((((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P ∧ (𝑣 ·P 𝑢) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
4439, 42, 43syl2anc 391 . . . . . . . . . . 11 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
45 simprr 484 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑤 +P 𝑢) = 𝑧)
46 oveq12 5521 . . . . . . . . . . . . . . . 16 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (𝑥 ·P 𝑧))
4746oveq1d 5527 . . . . . . . . . . . . . . 15 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
4825, 45, 47syl2anc 391 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
49 distrprg 6686 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑤P𝑢P) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
5027, 32, 40, 49syl3anc 1135 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)))
51 oveq2 5520 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 +P 𝑢) = 𝑧 → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5251adantl 262 . . . . . . . . . . . . . . . . . . 19 ((𝑢P ∧ (𝑤 +P 𝑢) = 𝑧) → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5352adantl 262 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
5450, 53eqtr3d 2074 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) = (𝑦 ·P 𝑧))
5554oveq1d 5527 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
56 distrprg 6686 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔PP) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
5756adantl 262 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔PP)) → (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P )))
58 mulcomprg 6678 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔P) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
5958adantl 262 . . . . . . . . . . . . . . . . . . 19 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓))
6057, 27, 28, 32, 24, 59caovdir2d 5677 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑤) = ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)))
6157, 27, 28, 40, 24, 59caovdir2d 5677 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑢) = ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢)))
6260, 61oveq12d 5530 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))))
63 distrprg 6686 . . . . . . . . . . . . . . . . . 18 (((𝑦 +P 𝑣) ∈ P𝑤P𝑢P) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)))
6429, 32, 40, 63syl3anc 1135 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)))
65 mulclpr 6670 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
6627, 32, 65syl2anc 391 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑤) ∈ P)
67 mulclpr 6670 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑢P) → (𝑦 ·P 𝑢) ∈ P)
6827, 40, 67syl2anc 391 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑦 ·P 𝑢) ∈ P)
69 mulclpr 6670 . . . . . . . . . . . . . . . . . . 19 ((𝑣P𝑤P) → (𝑣 ·P 𝑤) ∈ P)
7028, 32, 69syl2anc 391 . . . . . . . . . . . . . . . . . 18 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑣 ·P 𝑤) ∈ P)
71 addcomprg 6676 . . . . . . . . . . . . . . . . . . 19 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
7271adantl 262 . . . . . . . . . . . . . . . . . 18 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
73 addassprg 6677 . . . . . . . . . . . . . . . . . . 19 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7473adantl 262 . . . . . . . . . . . . . . . . . 18 ((((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7566, 68, 70, 72, 74, 42, 24caov4d 5685 . . . . . . . . . . . . . . . . 17 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))))
7662, 64, 753eqtr4d 2082 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
7770, 38, 42, 72, 74caov12d 5682 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
7855, 76, 773eqtr4d 2082 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
79 oveq1 5519 . . . . . . . . . . . . . . . . . 18 ((𝑦 +P 𝑣) = 𝑥 → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8079adantl 262 . . . . . . . . . . . . . . . . 17 ((𝑣P ∧ (𝑦 +P 𝑣) = 𝑥) → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8180ad2antlr 458 . . . . . . . . . . . . . . . 16 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
8260, 81eqtr3d 2074 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) = (𝑥 ·P 𝑤))
8378, 82oveq12d 5530 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
8448, 83eqtr3d 2074 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
85 mulclpr 6670 . . . . . . . . . . . . . . . 16 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
8630, 36, 85syl2anc 391 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (𝑥 ·P 𝑧) ∈ P)
87 addassprg 6677 . . . . . . . . . . . . . . 15 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P ∧ (𝑣 ·P 𝑤) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
8886, 66, 70, 87syl3anc 1135 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
89 addclpr 6635 . . . . . . . . . . . . . . . 16 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
9086, 66, 89syl2anc 391 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
91 addcomprg 6676 . . . . . . . . . . . . . . 15 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ (𝑣 ·P 𝑤) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9290, 70, 91syl2anc 391 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9388, 92eqtr3d 2074 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9424, 38, 42caovcld 5654 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ P)
95 addassprg 6677 . . . . . . . . . . . . . . 15 (((𝑣 ·P 𝑤) ∈ P ∧ (𝑥 ·P 𝑤) ∈ P ∧ ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ P) → (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
9670, 34, 94, 95syl3anc 1135 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
9770, 94, 34, 72, 74caov32d 5681 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
98 addassprg 6677 . . . . . . . . . . . . . . . 16 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P ∧ (𝑣 ·P 𝑢) ∈ P) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
9934, 38, 42, 98syl3anc 1135 . . . . . . . . . . . . . . 15 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
10099oveq2d 5528 . . . . . . . . . . . . . 14 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))))
10196, 97, 1003eqtr4d 2082 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10284, 93, 1013eqtr3d 2080 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10324, 39, 42caovcld 5654 . . . . . . . . . . . . 13 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ∈ P)
104 addcanprg 6714 . . . . . . . . . . . . 13 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ∈ P) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
10570, 90, 103, 104syl3anc 1135 . . . . . . . . . . . 12 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
106102, 105mpd 13 . . . . . . . . . . 11 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
10744, 106breqtrrd 3790 . . . . . . . . . 10 (((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) ∧ (𝑢P ∧ (𝑤 +P 𝑢) = 𝑧)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
108107rexlimdvaa 2434 . . . . . . . . 9 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
10922, 108syl5 28 . . . . . . . 8 ((((𝑥P𝑦P) ∧ (𝑧P𝑤P)) ∧ (𝑣P ∧ (𝑦 +P 𝑣) = 𝑥)) → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
110109rexlimdvaa 2434 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (∃𝑣P (𝑦 +P 𝑣) = 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
11121, 110syl5 28 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (𝑦<P 𝑥 → (𝑤<P 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
112111impd 242 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
113 mulsrpr 6831 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
114113breq2d 3776 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ))
115 gt0srpr 6833 . . . . . 6 (0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
116114, 115syl6bb 185 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
117112, 116sylibrd 158 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
11820, 117syl5bi 141 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
1197, 12, 17, 1182ecoptocl 6194 . 2 ((𝐴R𝐵R) → ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)))
1206, 119mpcom 32 1 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885   = wceq 1243  wcel 1393  wrex 2307  cop 3378   class class class wbr 3764  (class class class)co 5512  [cec 6104  Pcnp 6389   +P cpp 6391   ·P cmp 6392  <P cltp 6393   ~R cer 6394  Rcnr 6395  0Rc0r 6396   ·R cmr 6400   <R cltr 6401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567  df-iltp 6568  df-enr 6811  df-nr 6812  df-mr 6814  df-ltr 6815  df-0r 6816
This theorem is referenced by:  axpre-mulgt0  6961
  Copyright terms: Public domain W3C validator