Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov32d Structured version   GIF version

Theorem caov32d 5623
 Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1 (φA 𝑆)
caovd.2 (φB 𝑆)
caovd.3 (φ𝐶 𝑆)
caovd.com ((φ (x 𝑆 y 𝑆)) → (x𝐹y) = (y𝐹x))
caovd.ass ((φ (x 𝑆 y 𝑆 z 𝑆)) → ((x𝐹y)𝐹z) = (x𝐹(y𝐹z)))
Assertion
Ref Expression
caov32d (φ → ((A𝐹B)𝐹𝐶) = ((A𝐹𝐶)𝐹B))
Distinct variable groups:   x,y,z,A   x,B,y,z   x,𝐶,y,z   φ,x,y,z   x,𝐹,y,z   x,𝑆,y,z

Proof of Theorem caov32d
StepHypRef Expression
1 caovd.com . . . 4 ((φ (x 𝑆 y 𝑆)) → (x𝐹y) = (y𝐹x))
2 caovd.2 . . . 4 (φB 𝑆)
3 caovd.3 . . . 4 (φ𝐶 𝑆)
41, 2, 3caovcomd 5599 . . 3 (φ → (B𝐹𝐶) = (𝐶𝐹B))
54oveq2d 5471 . 2 (φ → (A𝐹(B𝐹𝐶)) = (A𝐹(𝐶𝐹B)))
6 caovd.ass . . 3 ((φ (x 𝑆 y 𝑆 z 𝑆)) → ((x𝐹y)𝐹z) = (x𝐹(y𝐹z)))
7 caovd.1 . . 3 (φA 𝑆)
86, 7, 2, 3caovassd 5602 . 2 (φ → ((A𝐹B)𝐹𝐶) = (A𝐹(B𝐹𝐶)))
96, 7, 3, 2caovassd 5602 . 2 (φ → ((A𝐹𝐶)𝐹B) = (A𝐹(𝐶𝐹B)))
105, 8, 93eqtr4d 2079 1 (φ → ((A𝐹B)𝐹𝐶) = ((A𝐹𝐶)𝐹B))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 884   = wceq 1242   ∈ wcel 1390  (class class class)co 5455 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-iota 4810  df-fv 4853  df-ov 5458 This theorem is referenced by:  caov31d  5625  mulcanenq  6369  mulcanenq0ec  6428  ltexprlemrl  6584  ltexprlemru  6586  cauappcvgprlemladdfl  6627  cauappcvgprlemladdru  6628  mulcmpblnrlemg  6668  ltsosr  6692  recexgt0sr  6701  mulgt0sr  6704
 Copyright terms: Public domain W3C validator