ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq12 GIF version

Theorem oveq12 5521
Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.)
Assertion
Ref Expression
oveq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))

Proof of Theorem oveq12
StepHypRef Expression
1 oveq1 5519 . 2 (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶))
2 oveq2 5520 . 2 (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷))
31, 2sylan9eq 2092 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  (class class class)co 5512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by:  oveq12i  5524  oveq12d  5530  oveqan12d  5531  sprmpt2  5857  ecopoveq  6201  ecopovtrn  6203  ecopovtrng  6206  th3qlem1  6208  th3qlem2  6209  mulcmpblnq  6466  addpipqqs  6468  ordpipqqs  6472  enq0breq  6534  mulcmpblnq0  6542  nqpnq0nq  6551  nqnq0a  6552  nqnq0m  6553  nq0m0r  6554  nq0a0  6555  distrlem5prl  6684  distrlem5pru  6685  addcmpblnr  6824  ltsrprg  6832  mulgt0sr  6862  add20  7469  cru  7593  qaddcl  8570  qmulcl  8572  fzopth  8924  modqval  9166  1exp  9284  reval  9449  absval  9599  clim  9802
  Copyright terms: Public domain W3C validator