Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveq12 | GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
oveq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5519 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
2 | oveq2 5520 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷)) | |
3 | 1, 2 | sylan9eq 2092 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 (class class class)co 5512 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 |
This theorem is referenced by: oveq12i 5524 oveq12d 5530 oveqan12d 5531 sprmpt2 5857 ecopoveq 6201 ecopovtrn 6203 ecopovtrng 6206 th3qlem1 6208 th3qlem2 6209 mulcmpblnq 6466 addpipqqs 6468 ordpipqqs 6472 enq0breq 6534 mulcmpblnq0 6542 nqpnq0nq 6551 nqnq0a 6552 nqnq0m 6553 nq0m0r 6554 nq0a0 6555 distrlem5prl 6684 distrlem5pru 6685 addcmpblnr 6824 ltsrprg 6832 mulgt0sr 6862 add20 7469 cru 7593 qaddcl 8570 qmulcl 8572 fzopth 8924 modqval 9166 1exp 9284 reval 9449 absval 9599 clim 9802 |
Copyright terms: Public domain | W3C validator |