ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlem2 GIF version

Theorem caucvgprprlem2 6808
Description: Lemma for caucvgprpr 6810. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
caucvgprprlemlim.q (𝜑𝑄P)
caucvgprprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprprlemlim.jkq (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
Assertion
Ref Expression
caucvgprprlem2 (𝜑𝐿<P ((𝐹𝐾) +P 𝑄))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝐴,𝑟   𝐹,𝑟,𝑢,𝑙,𝑘   𝑛,𝐹   𝐾,𝑙,𝑝,𝑢,𝑞,𝑟   𝐽,𝑙,𝑢   𝑘,𝐿   𝜑,𝑟   𝑘,𝑛   𝑘,𝑟   𝑞,𝑙,𝑟   𝑚,𝑟   𝑘,𝑝,𝑞   𝑢,𝑛,𝑙,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑞,𝑝,𝑙)   𝑄(𝑢,𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑞,𝑝)   𝐽(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝)   𝐾(𝑘,𝑚,𝑛)   𝐿(𝑢,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 caucvgprprlemlim.jk . . . . 5 (𝜑𝐽 <N 𝐾)
2 caucvgprprlemlim.jkq . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐽, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐽, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
31, 2caucvgprprlemk 6781 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄)
4 ltrelpi 6422 . . . . . . . . . 10 <N ⊆ (N × N)
54brel 4392 . . . . . . . . 9 (𝐽 <N 𝐾 → (𝐽N𝐾N))
61, 5syl 14 . . . . . . . 8 (𝜑 → (𝐽N𝐾N))
76simprd 107 . . . . . . 7 (𝜑𝐾N)
8 nnnq 6520 . . . . . . . 8 (𝐾N → [⟨𝐾, 1𝑜⟩] ~QQ)
9 recclnq 6490 . . . . . . . 8 ([⟨𝐾, 1𝑜⟩] ~QQ → (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ∈ Q)
108, 9syl 14 . . . . . . 7 (𝐾N → (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ∈ Q)
117, 10syl 14 . . . . . 6 (𝜑 → (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ∈ Q)
12 nqprlu 6645 . . . . . 6 ((*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ∈ Q → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
1311, 12syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
14 caucvgprprlemlim.q . . . . 5 (𝜑𝑄P)
15 caucvgprpr.f . . . . . 6 (𝜑𝐹:NP)
1615, 7ffvelrnd 5303 . . . . 5 (𝜑 → (𝐹𝐾) ∈ P)
17 ltaprg 6717 . . . . 5 ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ ∈ P𝑄P ∧ (𝐹𝐾) ∈ P) → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
1813, 14, 16, 17syl3anc 1135 . . . 4 (𝜑 → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩<P 𝑄 ↔ ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄)))
193, 18mpbid 135 . . 3 (𝜑 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄))
20 addclpr 6635 . . . . 5 (((𝐹𝐾) ∈ P ∧ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ ∈ P) → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
2116, 13, 20syl2anc 391 . . . 4 (𝜑 → ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∈ P)
22 addclpr 6635 . . . . 5 (((𝐹𝐾) ∈ P𝑄P) → ((𝐹𝐾) +P 𝑄) ∈ P)
2316, 14, 22syl2anc 391 . . . 4 (𝜑 → ((𝐹𝐾) +P 𝑄) ∈ P)
24 ltdfpr 6604 . . . 4 ((((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∈ P ∧ ((𝐹𝐾) +P 𝑄) ∈ P) → (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
2521, 23, 24syl2anc 391 . . 3 (𝜑 → (((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
2619, 25mpbid 135 . 2 (𝜑 → ∃𝑥Q (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))
27 simprl 483 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥Q)
287adantr 261 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝐾N)
29 simprrl 491 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)))
30 breq1 3767 . . . . . . . . . . . 12 (𝑙 = 𝑝 → (𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )))
3130cbvabv 2161 . . . . . . . . . . 11 {𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}
32 breq2 3768 . . . . . . . . . . . 12 (𝑢 = 𝑞 → ((*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢 ↔ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞))
3332cbvabv 2161 . . . . . . . . . . 11 {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢} = {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}
3431, 33opeq12i 3554 . . . . . . . . . 10 ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩
3534oveq2i 5523 . . . . . . . . 9 ((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) = ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)
3635fveq2i 5181 . . . . . . . 8 (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) = (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
3729, 36syl6eleq 2130 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)))
38 nqprlu 6645 . . . . . . . . . . 11 ((*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) ∈ Q → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
3911, 38syl 14 . . . . . . . . . 10 (𝜑 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P)
40 addclpr 6635 . . . . . . . . . 10 (((𝐹𝐾) ∈ P ∧ ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ ∈ P) → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4116, 39, 40syl2anc 391 . . . . . . . . 9 (𝜑 → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
4241adantr 261 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P)
43 nqpru 6650 . . . . . . . 8 ((𝑥Q ∧ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) ∈ P) → (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
4427, 42, 43syl2anc 391 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)) ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
4537, 44mpbid 135 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
46 fveq2 5178 . . . . . . . . 9 (𝑟 = 𝐾 → (𝐹𝑟) = (𝐹𝐾))
47 opeq1 3549 . . . . . . . . . . . . . 14 (𝑟 = 𝐾 → ⟨𝑟, 1𝑜⟩ = ⟨𝐾, 1𝑜⟩)
4847eceq1d 6142 . . . . . . . . . . . . 13 (𝑟 = 𝐾 → [⟨𝑟, 1𝑜⟩] ~Q = [⟨𝐾, 1𝑜⟩] ~Q )
4948fveq2d 5182 . . . . . . . . . . . 12 (𝑟 = 𝐾 → (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) = (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ))
5049breq2d 3776 . . . . . . . . . . 11 (𝑟 = 𝐾 → (𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) ↔ 𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )))
5150abbidv 2155 . . . . . . . . . 10 (𝑟 = 𝐾 → {𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )} = {𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )})
5249breq1d 3774 . . . . . . . . . . 11 (𝑟 = 𝐾 → ((*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞 ↔ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞))
5352abbidv 2155 . . . . . . . . . 10 (𝑟 = 𝐾 → {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞} = {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞})
5451, 53opeq12d 3557 . . . . . . . . 9 (𝑟 = 𝐾 → ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)
5546, 54oveq12d 5530 . . . . . . . 8 (𝑟 = 𝐾 → ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩) = ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩))
5655breq1d 3774 . . . . . . 7 (𝑟 = 𝐾 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩ ↔ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
5756rspcev 2656 . . . . . 6 ((𝐾N ∧ ((𝐹𝐾) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
5828, 45, 57syl2anc 391 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
59 breq2 3768 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑝 <Q 𝑢𝑝 <Q 𝑥))
6059abbidv 2155 . . . . . . . . 9 (𝑢 = 𝑥 → {𝑝𝑝 <Q 𝑢} = {𝑝𝑝 <Q 𝑥})
61 breq1 3767 . . . . . . . . . 10 (𝑢 = 𝑥 → (𝑢 <Q 𝑞𝑥 <Q 𝑞))
6261abbidv 2155 . . . . . . . . 9 (𝑢 = 𝑥 → {𝑞𝑢 <Q 𝑞} = {𝑞𝑥 <Q 𝑞})
6360, 62opeq12d 3557 . . . . . . . 8 (𝑢 = 𝑥 → ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩)
6463breq2d 3776 . . . . . . 7 (𝑢 = 𝑥 → (((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
6564rexbidv 2327 . . . . . 6 (𝑢 = 𝑥 → (∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩ ↔ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
66 caucvgprpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
6766fveq2i 5181 . . . . . . 7 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
68 nqex 6461 . . . . . . . . 9 Q ∈ V
6968rabex 3901 . . . . . . . 8 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
7068rabex 3901 . . . . . . . 8 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
7169, 70op2nd 5774 . . . . . . 7 (2nd ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
7267, 71eqtri 2060 . . . . . 6 (2nd𝐿) = {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}
7365, 72elrab2 2700 . . . . 5 (𝑥 ∈ (2nd𝐿) ↔ (𝑥Q ∧ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1𝑜⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1𝑜⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑥}, {𝑞𝑥 <Q 𝑞}⟩))
7427, 58, 73sylanbrc 394 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (2nd𝐿))
75 simprrr 492 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))
76 rspe 2370 . . . 4 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))
7727, 74, 75, 76syl12anc 1133 . . 3 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))
78 caucvgprpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))))
79 caucvgprpr.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
8015, 78, 79, 66caucvgprprlemcl 6802 . . . . 5 (𝜑𝐿P)
8180adantr 261 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝐿P)
8223adantr 261 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → ((𝐹𝐾) +P 𝑄) ∈ P)
83 ltdfpr 6604 . . . 4 ((𝐿P ∧ ((𝐹𝐾) +P 𝑄) ∈ P) → (𝐿<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
8481, 82, 83syl2anc 391 . . 3 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → (𝐿<P ((𝐹𝐾) +P 𝑄) ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐿) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄)))))
8577, 84mpbird 156 . 2 ((𝜑 ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘((𝐹𝐾) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐾, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐾, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)) ∧ 𝑥 ∈ (1st ‘((𝐹𝐾) +P 𝑄))))) → 𝐿<P ((𝐹𝐾) +P 𝑄))
8626, 85rexlimddv 2437 1 (𝜑𝐿<P ((𝐹𝐾) +P 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  {cab 2026  wral 2306  wrex 2307  {crab 2310  cop 3378   class class class wbr 3764  wf 4898  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  1𝑜c1o 5994  [cec 6104  Ncnpi 6370   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380  *Qcrq 6382   <Q cltq 6383  Pcnp 6389   +P cpp 6391  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-iplp 6566  df-iltp 6568
This theorem is referenced by:  caucvgprprlemlim  6809
  Copyright terms: Public domain W3C validator