Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltrelpi | GIF version |
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
ltrelpi | ⊢ <N ⊆ (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 6405 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
2 | inss2 3158 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
3 | 1, 2 | eqsstri 2975 | 1 ⊢ <N ⊆ (N × N) |
Colors of variables: wff set class |
Syntax hints: ∩ cin 2916 ⊆ wss 2917 E cep 4024 × cxp 4343 Ncnpi 6370 <N clti 6373 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-ss 2931 df-lti 6405 |
This theorem is referenced by: ltsonq 6496 caucvgprlemk 6763 caucvgprlem1 6777 caucvgprlem2 6778 caucvgprprlemk 6781 caucvgprprlemval 6786 caucvgprprlem1 6807 caucvgprprlem2 6808 ltrenn 6931 |
Copyright terms: Public domain | W3C validator |