Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq12i GIF version

Theorem opeq12i 3554
 Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
opeq1i.1 𝐴 = 𝐵
opeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
opeq12i 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷

Proof of Theorem opeq12i
StepHypRef Expression
1 opeq1i.1 . 2 𝐴 = 𝐵
2 opeq12i.2 . 2 𝐶 = 𝐷
3 opeq12 3551 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ⟨𝐴, 𝐶⟩ = ⟨𝐵, 𝐷⟩)
41, 2, 3mp2an 402 1 𝐴, 𝐶⟩ = ⟨𝐵, 𝐷
 Colors of variables: wff set class Syntax hints:   = wceq 1243  ⟨cop 3378 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384 This theorem is referenced by:  addpinq1  6562  genipv  6607  ltexpri  6711  recexpr  6736  cauappcvgprlemladdru  6754  cauappcvgprlemladdrl  6755  cauappcvgpr  6760  caucvgprlemcl  6774  caucvgprlemladdrl  6776  caucvgpr  6780  caucvgprprlemval  6786  caucvgprprlemnbj  6791  caucvgprprlemmu  6793  caucvgprprlemclphr  6803  caucvgprprlemaddq  6806  caucvgprprlem1  6807  caucvgprprlem2  6808  caucvgsr  6886  pitonnlem1  6921  axi2m1  6949  axcaucvg  6974
 Copyright terms: Public domain W3C validator