Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6eleq GIF version

Theorem syl6eleq 2130
 Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl6eleq.1 (𝜑𝐴𝐵)
syl6eleq.2 𝐵 = 𝐶
Assertion
Ref Expression
syl6eleq (𝜑𝐴𝐶)

Proof of Theorem syl6eleq
StepHypRef Expression
1 syl6eleq.1 . 2 (𝜑𝐴𝐵)
2 syl6eleq.2 . . 3 𝐵 = 𝐶
32a1i 9 . 2 (𝜑𝐵 = 𝐶)
41, 3eleqtrd 2116 1 (𝜑𝐴𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∈ wcel 1393 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036 This theorem is referenced by:  syl6eleqr  2131  prid2g  3475  caucvgprprlem2  6808  gt0srpr  6833  eluzel2  8478  fseq1p1m1  8956  fznn0sub2  8985  nn0split  8994  exple1  9310  clim2iser  9857  clim2iser2  9858  iiserex  9859  iisermulc2  9860  iserile  9862  iserige0  9863  climub  9864  climserile  9865  serif0  9871  ialgrp1  9885
 Copyright terms: Public domain W3C validator