Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  serif0 GIF version

Theorem serif0 9871
 Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
climcauc.1 𝑍 = (ℤ𝑀)
serif0.2 (𝜑𝑀 ∈ ℤ)
serif0.3 (𝜑𝐹𝑉)
serif0.4 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
serif0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
serif0 (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘   𝑘,𝑉

Proof of Theorem serif0
Dummy variables 𝑗 𝑚 𝑛 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serif0.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 serif0.4 . . . . 5 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
3 climcauc.1 . . . . . 6 𝑍 = (ℤ𝑀)
43climcaucn 9870 . . . . 5 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥))
51, 2, 4syl2anc 391 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥))
63cau3 9711 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥))
75, 6sylib 127 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥))
83peano2uzs 8527 . . . . . . 7 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
98adantl 262 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ 𝑍)
10 eluzelz 8482 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
11 uzid 8487 . . . . . . . . . 10 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
12 peano2uz 8526 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑚) → (𝑚 + 1) ∈ (ℤ𝑚))
13 fveq2 5178 . . . . . . . . . . . . . 14 (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) = (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))
1413oveq2d 5528 . . . . . . . . . . . . 13 (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘)) = ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1))))
1514fveq2d 5182 . . . . . . . . . . . 12 (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))))
1615breq1d 3774 . . . . . . . . . . 11 (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1716rspcv 2652 . . . . . . . . . 10 ((𝑚 + 1) ∈ (ℤ𝑚) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1810, 11, 12, 174syl 18 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1918adantld 263 . . . . . . . 8 (𝑚 ∈ (ℤ𝑗) → (((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
2019ralimia 2382 . . . . . . 7 (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥)
21 simpr 103 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
2221, 3syl6eleq 2130 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
23 eluzelz 8482 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2422, 23syl 14 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
25 eluzp1m1 8496 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
2624, 25sylan 267 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
27 fveq2 5178 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹, ℂ)‘𝑚) = (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))
28 oveq1 5519 . . . . . . . . . . . . . . 15 (𝑚 = (𝑘 − 1) → (𝑚 + 1) = ((𝑘 − 1) + 1))
2928fveq2d 5182 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))
3027, 29oveq12d 5530 . . . . . . . . . . . . 13 (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1))))
3130fveq2d 5182 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))))
3231breq1d 3774 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
3332rspcv 2652 . . . . . . . . . 10 ((𝑘 − 1) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
3426, 33syl 14 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
35 serif0.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
363, 1, 35iserf 9233 . . . . . . . . . . . . . 14 (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
3736ad2antrr 457 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
383uztrn2 8490 . . . . . . . . . . . . . . 15 ((𝑗𝑍 ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
3921, 38sylan 267 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
4026, 39syldan 266 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍)
4137, 40ffvelrnd 5303 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) ∈ ℂ)
423uztrn2 8490 . . . . . . . . . . . . . 14 (((𝑗 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
439, 42sylan 267 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
4437, 43ffvelrnd 5303 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) ∈ ℂ)
4541, 44abssubd 9789 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))))
46 eluzelz 8482 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘(𝑗 + 1)) → 𝑘 ∈ ℤ)
4746adantl 262 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℤ)
4847zcnd 8361 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℂ)
49 ax-1cn 6977 . . . . . . . . . . . . . . 15 1 ∈ ℂ
50 npcan 7220 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
5148, 49, 50sylancl 392 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
5251fveq2d 5182 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹, ℂ)‘𝑘))
5352oveq2d 5528 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘)))
5453fveq2d 5182 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))))
551ad2antrr 457 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
56 eluzp1p1 8498 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
5722, 56syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
58 eqid 2040 . . . . . . . . . . . . . . . . 17 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
5958uztrn2 8490 . . . . . . . . . . . . . . . 16 (((𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
6057, 59sylan 267 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
61 cnex 7005 . . . . . . . . . . . . . . . 16 ℂ ∈ V
6261a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ℂ ∈ V)
63 simpr 103 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
6463, 3syl6eleqr 2131 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎𝑍)
6535ralrimiva 2392 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
6665ad3antrrr 461 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
67 fveq2 5178 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
6867eleq1d 2106 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
6968rspcva 2654 . . . . . . . . . . . . . . . 16 ((𝑎𝑍 ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (𝐹𝑎) ∈ ℂ)
7064, 66, 69syl2anc 391 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝐹𝑎) ∈ ℂ)
71 addcl 7006 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
7271adantl 262 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ)
7355, 60, 62, 70, 72iseqm1 9227 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)))
7473oveq1d 5527 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))))
7535adantlr 446 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7643, 75syldan 266 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) ∈ ℂ)
7741, 76pncan2d 7324 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))) = (𝐹𝑘))
7874, 77eqtr2d 2073 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) = ((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))))
7978fveq2d 5182 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘(𝐹𝑘)) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))))
8045, 54, 793eqtr4d 2082 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹𝑘)))
8180breq1d 3774 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
8234, 81sylibd 138 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹𝑘)) < 𝑥))
8382ralrimdva 2399 . . . . . . 7 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8420, 83syl5 28 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
85 fveq2 5178 . . . . . . . 8 (𝑛 = (𝑗 + 1) → (ℤ𝑛) = (ℤ‘(𝑗 + 1)))
8685raleqdv 2511 . . . . . . 7 (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8786rspcev 2656 . . . . . 6 (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
889, 84, 87syl6an 1323 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8988rexlimdva 2433 . . . 4 (𝜑 → (∃𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9089ralimdv 2388 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
917, 90mpd 13 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
92 serif0.3 . . 3 (𝜑𝐹𝑉)
93 eqidd 2041 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
943, 1, 92, 93, 35clim0c 9807 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9591, 94mpbird 156 1 (𝜑𝐹 ⇝ 0)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   = wceq 1243   ∈ wcel 1393  ∀wral 2306  ∃wrex 2307  Vcvv 2557   class class class wbr 3764  dom cdm 4345  ⟶wf 4898  ‘cfv 4902  (class class class)co 5512  ℂcc 6887  0cc0 6889  1c1 6890   + caddc 6892   < clt 7060   − cmin 7182  ℤcz 8245  ℤ≥cuz 8473  ℝ+crp 8583  seqcseq 9211  abscabs 9595   ⇝ cli 9799 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255  df-cj 9442  df-re 9443  df-im 9444  df-rsqrt 9596  df-abs 9597  df-clim 9800 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator