ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  serif0 GIF version

Theorem serif0 9844
Description: If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
Hypotheses
Ref Expression
climcauc.1 𝑍 = (ℤ𝑀)
serif0.2 (𝜑𝑀 ∈ ℤ)
serif0.3 (𝜑𝐹𝑉)
serif0.4 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
serif0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
serif0 (𝜑𝐹 ⇝ 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘   𝑘,𝑉

Proof of Theorem serif0
Dummy variables 𝑗 𝑚 𝑛 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 serif0.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
2 serif0.4 . . . . 5 (𝜑 → seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ )
3 climcauc.1 . . . . . 6 𝑍 = (ℤ𝑀)
43climcaucn 9843 . . . . 5 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹, ℂ) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥))
51, 2, 4syl2anc 391 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥))
63cau3 9685 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥))
75, 6sylib 127 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥))
83peano2uzs 8525 . . . . . . 7 (𝑗𝑍 → (𝑗 + 1) ∈ 𝑍)
98adantl 262 . . . . . 6 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ 𝑍)
10 eluzelz 8480 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑗) → 𝑚 ∈ ℤ)
11 uzid 8485 . . . . . . . . . 10 (𝑚 ∈ ℤ → 𝑚 ∈ (ℤ𝑚))
12 peano2uz 8524 . . . . . . . . . 10 (𝑚 ∈ (ℤ𝑚) → (𝑚 + 1) ∈ (ℤ𝑚))
13 fveq2 5178 . . . . . . . . . . . . . 14 (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) = (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))
1413oveq2d 5528 . . . . . . . . . . . . 13 (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘)) = ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1))))
1514fveq2d 5182 . . . . . . . . . . . 12 (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))))
1615breq1d 3774 . . . . . . . . . . 11 (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1716rspcv 2652 . . . . . . . . . 10 ((𝑚 + 1) ∈ (ℤ𝑚) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1810, 11, 12, 174syl 18 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
1918adantld 263 . . . . . . . 8 (𝑚 ∈ (ℤ𝑗) → (((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥))
2019ralimia 2382 . . . . . . 7 (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥)
21 simpr 103 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → 𝑗𝑍)
2221, 3syl6eleq 2130 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
23 eluzelz 8480 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
2422, 23syl 14 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
25 eluzp1m1 8494 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
2624, 25sylan 267 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ (ℤ𝑗))
27 fveq2 5178 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹, ℂ)‘𝑚) = (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))
28 oveq1 5519 . . . . . . . . . . . . . . 15 (𝑚 = (𝑘 − 1) → (𝑚 + 1) = ((𝑘 − 1) + 1))
2928fveq2d 5182 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))
3027, 29oveq12d 5530 . . . . . . . . . . . . 13 (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1))))
3130fveq2d 5182 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))))
3231breq1d 3774 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
3332rspcv 2652 . . . . . . . . . 10 ((𝑘 − 1) ∈ (ℤ𝑗) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
3426, 33syl 14 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥))
35 serif0.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
363, 1, 35iserf 9207 . . . . . . . . . . . . . 14 (𝜑 → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
3736ad2antrr 457 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → seq𝑀( + , 𝐹, ℂ):𝑍⟶ℂ)
383uztrn2 8488 . . . . . . . . . . . . . . 15 ((𝑗𝑍 ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
3921, 38sylan 267 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ (𝑘 − 1) ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ 𝑍)
4026, 39syldan 266 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍)
4137, 40ffvelrnd 5303 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) ∈ ℂ)
423uztrn2 8488 . . . . . . . . . . . . . 14 (((𝑗 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
439, 42sylan 267 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘𝑍)
4437, 43ffvelrnd 5303 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) ∈ ℂ)
4541, 44abssubd 9763 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))))
46 eluzelz 8480 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘(𝑗 + 1)) → 𝑘 ∈ ℤ)
4746adantl 262 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℤ)
4847zcnd 8359 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ ℂ)
49 ax-1cn 6975 . . . . . . . . . . . . . . 15 1 ∈ ℂ
50 npcan 7218 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
5148, 49, 50sylancl 392 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘)
5251fveq2d 5182 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹, ℂ)‘𝑘))
5352oveq2d 5528 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘)))
5453fveq2d 5182 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))))
551ad2antrr 457 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
56 eluzp1p1 8496 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
5722, 56syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)))
58 eqid 2040 . . . . . . . . . . . . . . . . 17 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
5958uztrn2 8488 . . . . . . . . . . . . . . . 16 (((𝑗 + 1) ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
6057, 59sylan 267 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
61 cnex 7003 . . . . . . . . . . . . . . . 16 ℂ ∈ V
6261a1i 9 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ℂ ∈ V)
63 simpr 103 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
6463, 3syl6eleqr 2131 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → 𝑎𝑍)
6535ralrimiva 2392 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
6665ad3antrrr 461 . . . . . . . . . . . . . . . 16 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
67 fveq2 5178 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (𝐹𝑘) = (𝐹𝑎))
6867eleq1d 2106 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑎) ∈ ℂ))
6968rspcva 2654 . . . . . . . . . . . . . . . 16 ((𝑎𝑍 ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (𝐹𝑎) ∈ ℂ)
7064, 66, 69syl2anc 391 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ 𝑎 ∈ (ℤ𝑀)) → (𝐹𝑎) ∈ ℂ)
71 addcl 7004 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 + 𝑏) ∈ ℂ)
7271adantl 262 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 + 𝑏) ∈ ℂ)
7355, 60, 62, 70, 72iseqm1 9201 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (seq𝑀( + , 𝐹, ℂ)‘𝑘) = ((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)))
7473oveq1d 5527 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))))
7535adantlr 446 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
7643, 75syldan 266 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) ∈ ℂ)
7741, 76pncan2d 7322 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) + (𝐹𝑘)) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))) = (𝐹𝑘))
7874, 77eqtr2d 2073 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (𝐹𝑘) = ((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1))))
7978fveq2d 5182 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘(𝐹𝑘)) = (abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑘) − (seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)))))
8045, 54, 793eqtr4d 2082 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹𝑘)))
8180breq1d 3774 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → ((abs‘((seq𝑀( + , 𝐹, ℂ)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹, ℂ)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
8234, 81sylibd 138 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ‘(𝑗 + 1))) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹𝑘)) < 𝑥))
8382ralrimdva 2399 . . . . . . 7 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8420, 83syl5 28 . . . . . 6 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
85 fveq2 5178 . . . . . . . 8 (𝑛 = (𝑗 + 1) → (ℤ𝑛) = (ℤ‘(𝑗 + 1)))
8685raleqdv 2511 . . . . . . 7 (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥))
8786rspcev 2656 . . . . . 6 (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ‘(𝑗 + 1))(abs‘(𝐹𝑘)) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
889, 84, 87syl6an 1323 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
8988rexlimdva 2433 . . . 4 (𝜑 → (∃𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9089ralimdv 2388 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑚 ∈ (ℤ𝑗)((seq𝑀( + , 𝐹, ℂ)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹, ℂ)‘𝑚) − (seq𝑀( + , 𝐹, ℂ)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
917, 90mpd 13 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥)
92 serif0.3 . . 3 (𝜑𝐹𝑉)
93 eqidd 2041 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
943, 1, 92, 93, 35clim0c 9780 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑛𝑍𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) < 𝑥))
9591, 94mpbird 156 1 (𝜑𝐹 ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wral 2306  wrex 2307  Vcvv 2557   class class class wbr 3764  dom cdm 4345  wf 4898  cfv 4902  (class class class)co 5512  cc 6885  0cc0 6887  1c1 6888   + caddc 6890   < clt 7058  cmin 7180  cz 8243  cuz 8471  +crp 8581  seqcseq 9185  abscabs 9569  cli 9772
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6973  ax-resscn 6974  ax-1cn 6975  ax-1re 6976  ax-icn 6977  ax-addcl 6978  ax-addrcl 6979  ax-mulcl 6980  ax-mulrcl 6981  ax-addcom 6982  ax-mulcom 6983  ax-addass 6984  ax-mulass 6985  ax-distr 6986  ax-i2m1 6987  ax-1rid 6989  ax-0id 6990  ax-rnegex 6991  ax-precex 6992  ax-cnre 6993  ax-pre-ltirr 6994  ax-pre-ltwlin 6995  ax-pre-lttrn 6996  ax-pre-apti 6997  ax-pre-ltadd 6998  ax-pre-mulgt0 6999  ax-pre-mulext 7000  ax-arch 7001  ax-caucvg 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-iltp 6566  df-enr 6809  df-nr 6810  df-ltr 6813  df-0r 6814  df-1r 6815  df-0 6894  df-1 6895  df-r 6897  df-lt 6900  df-pnf 7060  df-mnf 7061  df-xr 7062  df-ltxr 7063  df-le 7064  df-sub 7182  df-neg 7183  df-reap 7564  df-ap 7571  df-div 7650  df-inn 7913  df-2 7971  df-3 7972  df-4 7973  df-n0 8180  df-z 8244  df-uz 8472  df-rp 8582  df-iseq 9186  df-iexp 9229  df-cj 9416  df-re 9417  df-im 9418  df-rsqrt 9570  df-abs 9571  df-clim 9773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator