![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eqelr | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eqelr.1 | ⊢ (φ → B = A) |
syl6eqelr.2 | ⊢ B ∈ 𝐶 |
Ref | Expression |
---|---|
syl6eqelr | ⊢ (φ → A ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqelr.1 | . . 3 ⊢ (φ → B = A) | |
2 | 1 | eqcomd 2042 | . 2 ⊢ (φ → A = B) |
3 | syl6eqelr.2 | . 2 ⊢ B ∈ 𝐶 | |
4 | 2, 3 | syl6eqel 2125 | 1 ⊢ (φ → A ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1242 ∈ wcel 1390 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-4 1397 ax-17 1416 ax-ial 1424 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-cleq 2030 df-clel 2033 |
This theorem is referenced by: eusvnfb 4152 releldm2 5753 bren 6164 brdomg 6165 ioof 8610 |
Copyright terms: Public domain | W3C validator |