![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eleq | Unicode version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eleq.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6eleq.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6eleq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eleq.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6eleq.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eleqtrd 2116 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: syl6eleqr 2131 prid2g 3475 caucvgprprlem2 6808 gt0srpr 6833 eluzel2 8478 fseq1p1m1 8956 fznn0sub2 8985 nn0split 8994 exple1 9310 clim2iser 9857 clim2iser2 9858 iiserex 9859 iisermulc2 9860 iserile 9862 iserige0 9863 climub 9864 climserile 9865 serif0 9871 ialgrp1 9885 |
Copyright terms: Public domain | W3C validator |