ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem4pru Structured version   GIF version

Theorem distrlem4pru 6559
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem4pru (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶))))
Distinct variable groups:   x,y,z,f,A   x,B,y,z,f   x,𝐶,y,z,f

Proof of Theorem distrlem4pru
Dummy variables w v u g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 6385 . . . . . . 7 ((w Q v Q u Q) → (w <Q v ↔ (u ·Q w) <Q (u ·Q v)))
21adantl 262 . . . . . 6 ((((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) (w Q v Q u Q)) → (w <Q v ↔ (u ·Q w) <Q (u ·Q v)))
3 simp1 903 . . . . . . 7 ((A P B P 𝐶 P) → A P)
4 simpll 481 . . . . . . 7 (((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶))) → x (2ndA))
5 prop 6457 . . . . . . . 8 (A P → ⟨(1stA), (2ndA)⟩ P)
6 elprnqu 6464 . . . . . . . 8 ((⟨(1stA), (2ndA)⟩ P x (2ndA)) → x Q)
75, 6sylan 267 . . . . . . 7 ((A P x (2ndA)) → x Q)
83, 4, 7syl2an 273 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → x Q)
9 simprl 483 . . . . . . 7 (((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶))) → f (2ndA))
10 elprnqu 6464 . . . . . . . 8 ((⟨(1stA), (2ndA)⟩ P f (2ndA)) → f Q)
115, 10sylan 267 . . . . . . 7 ((A P f (2ndA)) → f Q)
123, 9, 11syl2an 273 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → f Q)
13 simpl3 908 . . . . . . 7 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → 𝐶 P)
14 simprrr 492 . . . . . . 7 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → z (2nd𝐶))
15 prop 6457 . . . . . . . 8 (𝐶 P → ⟨(1st𝐶), (2nd𝐶)⟩ P)
16 elprnqu 6464 . . . . . . . 8 ((⟨(1st𝐶), (2nd𝐶)⟩ P z (2nd𝐶)) → z Q)
1715, 16sylan 267 . . . . . . 7 ((𝐶 P z (2nd𝐶)) → z Q)
1813, 14, 17syl2anc 391 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → z Q)
19 mulcomnqg 6367 . . . . . . 7 ((w Q v Q) → (w ·Q v) = (v ·Q w))
2019adantl 262 . . . . . 6 ((((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) (w Q v Q)) → (w ·Q v) = (v ·Q w))
212, 8, 12, 18, 20caovord2d 5612 . . . . 5 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (x <Q f ↔ (x ·Q z) <Q (f ·Q z)))
22 mulclnq 6360 . . . . . . 7 ((x Q z Q) → (x ·Q z) Q)
238, 18, 22syl2anc 391 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (x ·Q z) Q)
24 mulclnq 6360 . . . . . . 7 ((f Q z Q) → (f ·Q z) Q)
2512, 18, 24syl2anc 391 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (f ·Q z) Q)
26 simpl2 907 . . . . . . . 8 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → B P)
27 simprlr 490 . . . . . . . 8 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → y (2ndB))
28 prop 6457 . . . . . . . . 9 (B P → ⟨(1stB), (2ndB)⟩ P)
29 elprnqu 6464 . . . . . . . . 9 ((⟨(1stB), (2ndB)⟩ P y (2ndB)) → y Q)
3028, 29sylan 267 . . . . . . . 8 ((B P y (2ndB)) → y Q)
3126, 27, 30syl2anc 391 . . . . . . 7 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → y Q)
32 mulclnq 6360 . . . . . . 7 ((x Q y Q) → (x ·Q y) Q)
338, 31, 32syl2anc 391 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (x ·Q y) Q)
34 ltanqg 6384 . . . . . 6 (((x ·Q z) Q (f ·Q z) Q (x ·Q y) Q) → ((x ·Q z) <Q (f ·Q z) ↔ ((x ·Q y) +Q (x ·Q z)) <Q ((x ·Q y) +Q (f ·Q z))))
3523, 25, 33, 34syl3anc 1134 . . . . 5 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → ((x ·Q z) <Q (f ·Q z) ↔ ((x ·Q y) +Q (x ·Q z)) <Q ((x ·Q y) +Q (f ·Q z))))
3621, 35bitrd 177 . . . 4 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (x <Q f ↔ ((x ·Q y) +Q (x ·Q z)) <Q ((x ·Q y) +Q (f ·Q z))))
37 simpl1 906 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → A P)
38 addclpr 6520 . . . . . . . 8 ((B P 𝐶 P) → (B +P 𝐶) P)
39383adant1 921 . . . . . . 7 ((A P B P 𝐶 P) → (B +P 𝐶) P)
4039adantr 261 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (B +P 𝐶) P)
41 mulclpr 6551 . . . . . 6 ((A P (B +P 𝐶) P) → (A ·P (B +P 𝐶)) P)
4237, 40, 41syl2anc 391 . . . . 5 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (A ·P (B +P 𝐶)) P)
43 distrnqg 6371 . . . . . . 7 ((x Q y Q z Q) → (x ·Q (y +Q z)) = ((x ·Q y) +Q (x ·Q z)))
448, 31, 18, 43syl3anc 1134 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (x ·Q (y +Q z)) = ((x ·Q y) +Q (x ·Q z)))
45 simprll 489 . . . . . . 7 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → x (2ndA))
46 df-iplp 6450 . . . . . . . . . 10 +P = (u P, v P ↦ ⟨{w Qg Q Q (g (1stu) (1stv) w = (g +Q ))}, {w Qg Q Q (g (2ndu) (2ndv) w = (g +Q ))}⟩)
47 addclnq 6359 . . . . . . . . . 10 ((g Q Q) → (g +Q ) Q)
4846, 47genppreclu 6497 . . . . . . . . 9 ((B P 𝐶 P) → ((y (2ndB) z (2nd𝐶)) → (y +Q z) (2nd ‘(B +P 𝐶))))
4948imp 115 . . . . . . . 8 (((B P 𝐶 P) (y (2ndB) z (2nd𝐶))) → (y +Q z) (2nd ‘(B +P 𝐶)))
5026, 13, 27, 14, 49syl22anc 1135 . . . . . . 7 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (y +Q z) (2nd ‘(B +P 𝐶)))
51 df-imp 6451 . . . . . . . . 9 ·P = (u P, v P ↦ ⟨{w Qg Q Q (g (1stu) (1stv) w = (g ·Q ))}, {w Qg Q Q (g (2ndu) (2ndv) w = (g ·Q ))}⟩)
52 mulclnq 6360 . . . . . . . . 9 ((g Q Q) → (g ·Q ) Q)
5351, 52genppreclu 6497 . . . . . . . 8 ((A P (B +P 𝐶) P) → ((x (2ndA) (y +Q z) (2nd ‘(B +P 𝐶))) → (x ·Q (y +Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
5453imp 115 . . . . . . 7 (((A P (B +P 𝐶) P) (x (2ndA) (y +Q z) (2nd ‘(B +P 𝐶)))) → (x ·Q (y +Q z)) (2nd ‘(A ·P (B +P 𝐶))))
5537, 40, 45, 50, 54syl22anc 1135 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (x ·Q (y +Q z)) (2nd ‘(A ·P (B +P 𝐶))))
5644, 55eqeltrrd 2112 . . . . 5 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → ((x ·Q y) +Q (x ·Q z)) (2nd ‘(A ·P (B +P 𝐶))))
57 prop 6457 . . . . . 6 ((A ·P (B +P 𝐶)) P → ⟨(1st ‘(A ·P (B +P 𝐶))), (2nd ‘(A ·P (B +P 𝐶)))⟩ P)
58 prcunqu 6467 . . . . . 6 ((⟨(1st ‘(A ·P (B +P 𝐶))), (2nd ‘(A ·P (B +P 𝐶)))⟩ P ((x ·Q y) +Q (x ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))) → (((x ·Q y) +Q (x ·Q z)) <Q ((x ·Q y) +Q (f ·Q z)) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
5957, 58sylan 267 . . . . 5 (((A ·P (B +P 𝐶)) P ((x ·Q y) +Q (x ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))) → (((x ·Q y) +Q (x ·Q z)) <Q ((x ·Q y) +Q (f ·Q z)) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
6042, 56, 59syl2anc 391 . . . 4 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (((x ·Q y) +Q (x ·Q z)) <Q ((x ·Q y) +Q (f ·Q z)) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
6136, 60sylbid 139 . . 3 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (x <Q f → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
622, 12, 8, 31, 20caovord2d 5612 . . . . 5 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (f <Q x ↔ (f ·Q y) <Q (x ·Q y)))
63 ltanqg 6384 . . . . . . 7 ((w Q v Q u Q) → (w <Q v ↔ (u +Q w) <Q (u +Q v)))
6463adantl 262 . . . . . 6 ((((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) (w Q v Q u Q)) → (w <Q v ↔ (u +Q w) <Q (u +Q v)))
65 mulclnq 6360 . . . . . . 7 ((f Q y Q) → (f ·Q y) Q)
6612, 31, 65syl2anc 391 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (f ·Q y) Q)
67 addcomnqg 6365 . . . . . . 7 ((w Q v Q) → (w +Q v) = (v +Q w))
6867adantl 262 . . . . . 6 ((((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) (w Q v Q)) → (w +Q v) = (v +Q w))
6964, 66, 33, 25, 68caovord2d 5612 . . . . 5 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → ((f ·Q y) <Q (x ·Q y) ↔ ((f ·Q y) +Q (f ·Q z)) <Q ((x ·Q y) +Q (f ·Q z))))
7062, 69bitrd 177 . . . 4 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (f <Q x ↔ ((f ·Q y) +Q (f ·Q z)) <Q ((x ·Q y) +Q (f ·Q z))))
71 distrnqg 6371 . . . . . . 7 ((f Q y Q z Q) → (f ·Q (y +Q z)) = ((f ·Q y) +Q (f ·Q z)))
7212, 31, 18, 71syl3anc 1134 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (f ·Q (y +Q z)) = ((f ·Q y) +Q (f ·Q z)))
73 simprrl 491 . . . . . . 7 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → f (2ndA))
7451, 52genppreclu 6497 . . . . . . . 8 ((A P (B +P 𝐶) P) → ((f (2ndA) (y +Q z) (2nd ‘(B +P 𝐶))) → (f ·Q (y +Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
7574imp 115 . . . . . . 7 (((A P (B +P 𝐶) P) (f (2ndA) (y +Q z) (2nd ‘(B +P 𝐶)))) → (f ·Q (y +Q z)) (2nd ‘(A ·P (B +P 𝐶))))
7637, 40, 73, 50, 75syl22anc 1135 . . . . . 6 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (f ·Q (y +Q z)) (2nd ‘(A ·P (B +P 𝐶))))
7772, 76eqeltrrd 2112 . . . . 5 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → ((f ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶))))
78 prcunqu 6467 . . . . . 6 ((⟨(1st ‘(A ·P (B +P 𝐶))), (2nd ‘(A ·P (B +P 𝐶)))⟩ P ((f ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))) → (((f ·Q y) +Q (f ·Q z)) <Q ((x ·Q y) +Q (f ·Q z)) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
7957, 78sylan 267 . . . . 5 (((A ·P (B +P 𝐶)) P ((f ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))) → (((f ·Q y) +Q (f ·Q z)) <Q ((x ·Q y) +Q (f ·Q z)) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
8042, 77, 79syl2anc 391 . . . 4 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (((f ·Q y) +Q (f ·Q z)) <Q ((x ·Q y) +Q (f ·Q z)) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
8170, 80sylbid 139 . . 3 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (f <Q x → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
8261, 81jaod 636 . 2 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → ((x <Q f f <Q x) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
83 ltsonq 6382 . . . . 5 <Q Or Q
84 nqtri3or 6380 . . . . 5 ((x Q f Q) → (x <Q f x = f f <Q x))
8583, 84sotritrieq 4053 . . . 4 ((x Q f Q) → (x = f ↔ ¬ (x <Q f f <Q x)))
868, 12, 85syl2anc 391 . . 3 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (x = f ↔ ¬ (x <Q f f <Q x)))
87 oveq1 5462 . . . . . . 7 (x = f → (x ·Q z) = (f ·Q z))
8887oveq2d 5471 . . . . . 6 (x = f → ((x ·Q y) +Q (x ·Q z)) = ((x ·Q y) +Q (f ·Q z)))
8944, 88sylan9eq 2089 . . . . 5 ((((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) x = f) → (x ·Q (y +Q z)) = ((x ·Q y) +Q (f ·Q z)))
9055adantr 261 . . . . 5 ((((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) x = f) → (x ·Q (y +Q z)) (2nd ‘(A ·P (B +P 𝐶))))
9189, 90eqeltrrd 2112 . . . 4 ((((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) x = f) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶))))
9291ex 108 . . 3 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (x = f → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
9386, 92sylbird 159 . 2 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → (¬ (x <Q f f <Q x) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶)))))
94 ltdcnq 6381 . . . . 5 ((x Q f Q) → DECID x <Q f)
95 ltdcnq 6381 . . . . . 6 ((f Q x Q) → DECID f <Q x)
9695ancoms 255 . . . . 5 ((x Q f Q) → DECID f <Q x)
97 dcor 842 . . . . 5 (DECID x <Q f → (DECID f <Q xDECID (x <Q f f <Q x)))
9894, 96, 97sylc 56 . . . 4 ((x Q f Q) → DECID (x <Q f f <Q x))
998, 12, 98syl2anc 391 . . 3 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → DECID (x <Q f f <Q x))
100 df-dc 742 . . 3 (DECID (x <Q f f <Q x) ↔ ((x <Q f f <Q x) ¬ (x <Q f f <Q x)))
10199, 100sylib 127 . 2 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → ((x <Q f f <Q x) ¬ (x <Q f f <Q x)))
10282, 93, 101mpjaod 637 1 (((A P B P 𝐶 P) ((x (2ndA) y (2ndB)) (f (2ndA) z (2nd𝐶)))) → ((x ·Q y) +Q (f ·Q z)) (2nd ‘(A ·P (B +P 𝐶))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   wa 97  wb 98   wo 628  DECID wdc 741   w3a 884   = wceq 1242   wcel 1390  cop 3370   class class class wbr 3755  cfv 4845  (class class class)co 5455  1st c1st 5707  2nd c2nd 5708  Qcnq 6264   +Q cplq 6266   ·Q cmq 6267   <Q cltq 6269  Pcnp 6275   +P cpp 6277   ·P cmp 6278
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-nul 3874  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220  ax-iinf 4254
This theorem depends on definitions:  df-bi 110  df-dc 742  df-3or 885  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-int 3607  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-tr 3846  df-eprel 4017  df-id 4021  df-po 4024  df-iso 4025  df-iord 4069  df-on 4071  df-suc 4074  df-iom 4257  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853  df-ov 5458  df-oprab 5459  df-mpt2 5460  df-1st 5709  df-2nd 5710  df-recs 5861  df-irdg 5897  df-1o 5940  df-2o 5941  df-oadd 5944  df-omul 5945  df-er 6042  df-ec 6044  df-qs 6048  df-ni 6288  df-pli 6289  df-mi 6290  df-lti 6291  df-plpq 6328  df-mpq 6329  df-enq 6331  df-nqqs 6332  df-plqqs 6333  df-mqqs 6334  df-1nqqs 6335  df-rq 6336  df-ltnqqs 6337  df-enq0 6406  df-nq0 6407  df-0nq0 6408  df-plq0 6409  df-mq0 6410  df-inp 6448  df-iplp 6450  df-imp 6451
This theorem is referenced by:  distrlem5pru  6561
  Copyright terms: Public domain W3C validator