ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simprlr Structured version   GIF version

Theorem simprlr 490
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.)
Assertion
Ref Expression
simprlr ((φ ((ψ χ) θ)) → χ)

Proof of Theorem simprlr
StepHypRef Expression
1 simpr 103 . 2 ((ψ χ) → χ)
21ad2antrl 459 1 ((φ ((ψ χ) θ)) → χ)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem is referenced by:  imain  4924  fcof1  5366  fliftfun  5379  addcmpblnq  6351  mulcmpblnq  6352  ordpipqqs  6358  enq0tr  6417  addcmpblnq0  6426  mulcmpblnq0  6427  nnnq0lem1  6429  addnq0mo  6430  mulnq0mo  6431  prarloclemcalc  6485  addlocpr  6519  distrlem4prl  6560  distrlem4pru  6561  addcmpblnr  6667  mulcmpblnrlemg  6668  mulcmpblnr  6669  prsrlem1  6670  addsrmo  6671  mulsrmo  6672  ltsrprg  6675  apreap  7371  apreim  7387  divdivdivap  7471  divsubdivap  7486  ledivdiv  7637  lediv12a  7641  leexp2r  8962
  Copyright terms: Public domain W3C validator