Step | Hyp | Ref
| Expression |
1 | | enq0er 6533 |
. . . . . . . . . . . . . 14
⊢
~Q0 Er (ω ×
N) |
2 | 1 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ))) → ~Q0 Er
(ω × N)) |
3 | | nnnq0lem1 6544 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ (𝑠 ∈ ω ∧ 𝑓 ∈ N)) ∧
((𝑢 ∈ ω ∧
𝑡 ∈ N)
∧ (𝑔 ∈ ω
∧ ℎ ∈
N))) ∧ ((𝑤 ·𝑜 𝑓) = (𝑣 ·𝑜 𝑠) ∧ (𝑢 ·𝑜 ℎ) = (𝑡 ·𝑜 𝑔)))) |
4 | | mulcmpblnq0 6542 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧
(𝑠 ∈ ω ∧
𝑓 ∈ N))
∧ ((𝑢 ∈ ω
∧ 𝑡 ∈
N) ∧ (𝑔
∈ ω ∧ ℎ
∈ N))) → (((𝑤 ·𝑜 𝑓) = (𝑣 ·𝑜 𝑠) ∧ (𝑢 ·𝑜 ℎ) = (𝑡 ·𝑜 𝑔)) → 〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉
~Q0 〈(𝑠 ·𝑜 𝑔), (𝑓 ·𝑜 ℎ)〉)) |
5 | 4 | imp 115 |
. . . . . . . . . . . . . 14
⊢
(((((𝑤 ∈
ω ∧ 𝑣 ∈
N) ∧ (𝑠
∈ ω ∧ 𝑓
∈ N)) ∧ ((𝑢 ∈ ω ∧ 𝑡 ∈ N) ∧ (𝑔 ∈ ω ∧ ℎ ∈ N))) ∧
((𝑤
·𝑜 𝑓) = (𝑣 ·𝑜 𝑠) ∧ (𝑢 ·𝑜 ℎ) = (𝑡 ·𝑜 𝑔))) → 〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉
~Q0 〈(𝑠 ·𝑜 𝑔), (𝑓 ·𝑜 ℎ)〉) |
6 | 3, 5 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ))) → 〈(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)〉
~Q0 〈(𝑠 ·𝑜 𝑔), (𝑓 ·𝑜 ℎ)〉) |
7 | 2, 6 | erthi 6152 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ))) → [〈(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 = [〈(𝑠 ·𝑜 𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ) |
8 | | simprlr 490 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ))) → 𝑧 = [〈(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) |
9 | | simprrr 492 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ))) → 𝑞 = [〈(𝑠 ·𝑜 𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ) |
10 | 7, 8, 9 | 3eqtr4d 2082 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ))) → 𝑧 = 𝑞) |
11 | 10 | expr 357 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) → (((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ) → 𝑧 = 𝑞)) |
12 | 11 | exlimdvv 1777 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) → (∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ) → 𝑧 = 𝑞)) |
13 | 12 | exlimdvv 1777 |
. . . . . . . 8
⊢ (((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) → (∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ) → 𝑧 = 𝑞)) |
14 | 13 | ex 108 |
. . . . . . 7
⊢ ((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) → (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) → (∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ) → 𝑧 = 𝑞))) |
15 | 14 | exlimdvv 1777 |
. . . . . 6
⊢ ((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) → (∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) → (∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ) → 𝑧 = 𝑞))) |
16 | 15 | exlimdvv 1777 |
. . . . 5
⊢ ((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) → (∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) → (∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ) → 𝑧 = 𝑞))) |
17 | 16 | impd 242 |
. . . 4
⊢ ((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) → ((∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 )) → 𝑧 = 𝑞)) |
18 | 17 | alrimivv 1755 |
. . 3
⊢ ((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) → ∀𝑧∀𝑞((∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 )) → 𝑧 = 𝑞)) |
19 | | opeq12 3551 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → 〈𝑤, 𝑣〉 = 〈𝑠, 𝑓〉) |
20 | 19 | eceq1d 6142 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → [〈𝑤, 𝑣〉] ~Q0 =
[〈𝑠, 𝑓〉]
~Q0 ) |
21 | 20 | eqeq2d 2051 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → (𝐴 = [〈𝑤, 𝑣〉] ~Q0 ↔
𝐴 = [〈𝑠, 𝑓〉] ~Q0
)) |
22 | 21 | anbi1d 438 |
. . . . . . . 8
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → ((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ↔
(𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0
))) |
23 | | simpl 102 |
. . . . . . . . . . . 12
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → 𝑤 = 𝑠) |
24 | 23 | oveq1d 5527 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → (𝑤 ·𝑜 𝑢) = (𝑠 ·𝑜 𝑢)) |
25 | | simpr 103 |
. . . . . . . . . . . 12
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → 𝑣 = 𝑓) |
26 | 25 | oveq1d 5527 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → (𝑣 ·𝑜 𝑡) = (𝑓 ·𝑜 𝑡)) |
27 | 24, 26 | opeq12d 3557 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → 〈(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)〉 = 〈(𝑠 ·𝑜
𝑢), (𝑓 ·𝑜 𝑡)〉) |
28 | 27 | eceq1d 6142 |
. . . . . . . . 9
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → [〈(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 = [〈(𝑠 ·𝑜 𝑢), (𝑓 ·𝑜 𝑡)〉]
~Q0 ) |
29 | 28 | eqeq2d 2051 |
. . . . . . . 8
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → (𝑞 = [〈(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ↔ 𝑞 = [〈(𝑠 ·𝑜 𝑢), (𝑓 ·𝑜 𝑡)〉]
~Q0 )) |
30 | 22, 29 | anbi12d 442 |
. . . . . . 7
⊢ ((𝑤 = 𝑠 ∧ 𝑣 = 𝑓) → (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ↔ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑢), (𝑓 ·𝑜 𝑡)〉]
~Q0 ))) |
31 | | opeq12 3551 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → 〈𝑢, 𝑡〉 = 〈𝑔, ℎ〉) |
32 | 31 | eceq1d 6142 |
. . . . . . . . . 10
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → [〈𝑢, 𝑡〉] ~Q0 =
[〈𝑔, ℎ〉]
~Q0 ) |
33 | 32 | eqeq2d 2051 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → (𝐵 = [〈𝑢, 𝑡〉] ~Q0 ↔
𝐵 = [〈𝑔, ℎ〉] ~Q0
)) |
34 | 33 | anbi2d 437 |
. . . . . . . 8
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ↔
(𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0
))) |
35 | | simpl 102 |
. . . . . . . . . . . 12
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → 𝑢 = 𝑔) |
36 | 35 | oveq2d 5528 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → (𝑠 ·𝑜 𝑢) = (𝑠 ·𝑜 𝑔)) |
37 | | simpr 103 |
. . . . . . . . . . . 12
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → 𝑡 = ℎ) |
38 | 37 | oveq2d 5528 |
. . . . . . . . . . 11
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → (𝑓 ·𝑜 𝑡) = (𝑓 ·𝑜 ℎ)) |
39 | 36, 38 | opeq12d 3557 |
. . . . . . . . . 10
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → 〈(𝑠 ·𝑜 𝑢), (𝑓 ·𝑜 𝑡)〉 = 〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉) |
40 | 39 | eceq1d 6142 |
. . . . . . . . 9
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → [〈(𝑠 ·𝑜 𝑢), (𝑓 ·𝑜 𝑡)〉]
~Q0 = [〈(𝑠 ·𝑜 𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ) |
41 | 40 | eqeq2d 2051 |
. . . . . . . 8
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → (𝑞 = [〈(𝑠 ·𝑜 𝑢), (𝑓 ·𝑜 𝑡)〉]
~Q0 ↔ 𝑞 = [〈(𝑠 ·𝑜 𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 )) |
42 | 34, 41 | anbi12d 442 |
. . . . . . 7
⊢ ((𝑢 = 𝑔 ∧ 𝑡 = ℎ) → (((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑢), (𝑓 ·𝑜 𝑡)〉]
~Q0 ) ↔ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ))) |
43 | 30, 42 | cbvex4v 1805 |
. . . . . 6
⊢
(∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ↔ ∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 )) |
44 | 43 | anbi2i 430 |
. . . . 5
⊢
((∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) ↔ (∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 ))) |
45 | 44 | imbi1i 227 |
. . . 4
⊢
(((∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) → 𝑧 = 𝑞) ↔ ((∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 )) → 𝑧 = 𝑞)) |
46 | 45 | 2albii 1360 |
. . 3
⊢
(∀𝑧∀𝑞((∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) → 𝑧 = 𝑞) ↔ ∀𝑧∀𝑞((∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑠∃𝑓∃𝑔∃ℎ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧
𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧
𝑞 = [〈(𝑠 ·𝑜
𝑔), (𝑓 ·𝑜 ℎ)〉]
~Q0 )) → 𝑧 = 𝑞)) |
47 | 18, 46 | sylibr 137 |
. 2
⊢ ((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) → ∀𝑧∀𝑞((∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) → 𝑧 = 𝑞)) |
48 | | eqeq1 2046 |
. . . . 5
⊢ (𝑧 = 𝑞 → (𝑧 = [〈(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ↔ 𝑞 = [〈(𝑤 ·𝑜 𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) |
49 | 48 | anbi2d 437 |
. . . 4
⊢ (𝑧 = 𝑞 → (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ↔ ((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ))) |
50 | 49 | 4exbidv 1750 |
. . 3
⊢ (𝑧 = 𝑞 → (∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ↔ ∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ))) |
51 | 50 | mo4 1961 |
. 2
⊢
(∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ↔ ∀𝑧∀𝑞((∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑞 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) → 𝑧 = 𝑞)) |
52 | 47, 51 | sylibr 137 |
1
⊢ ((𝐴 ∈ ((ω ×
N) / ~Q0 ) ∧ 𝐵 ∈ ((ω ×
N) / ~Q0 )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧
𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧
𝑧 = [〈(𝑤 ·𝑜
𝑢), (𝑣 ·𝑜 𝑡)〉]
~Q0 )) |