ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniq GIF version

Theorem recvguniq 9593
Description: Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
recvguniq.f (𝜑𝐹:ℕ⟶ℝ)
recvguniq.lre (𝜑𝐿 ∈ ℝ)
recvguniq.l (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
recvguniq.mre (𝜑𝑀 ∈ ℝ)
recvguniq.m (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
Assertion
Ref Expression
recvguniq (𝜑𝐿 = 𝑀)
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝐿,𝑘,𝑥   𝑗,𝑀,𝑘,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑘)

Proof of Theorem recvguniq
StepHypRef Expression
1 recvguniq.lre . . . . 5 (𝜑𝐿 ∈ ℝ)
2 recvguniq.mre . . . . 5 (𝜑𝑀 ∈ ℝ)
3 reaplt 7579 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
41, 2, 3syl2anc 391 . . . 4 (𝜑 → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
5 simpr 103 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → 𝐿 < 𝑀)
61adantr 261 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝐿 ∈ ℝ)
72adantr 261 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ ℝ)
8 difrp 8619 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
96, 7, 8syl2anc 391 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
105, 9mpbid 135 . . . . . . . . 9 ((𝜑𝐿 < 𝑀) → (𝑀𝐿) ∈ ℝ+)
1110rphalfcld 8635 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ((𝑀𝐿) / 2) ∈ ℝ+)
12 recvguniq.l . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
13 recvguniq.m . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
14 r19.26 2441 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
1512, 13, 14sylanbrc 394 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
16 nnuz 8508 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1716rexanuz2 9589 . . . . . . . . . . . 12 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
1817ralbii 2330 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
1915, 18sylibr 137 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2016r19.2uz 9591 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2120ralimi 2384 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2219, 21syl 14 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2322adantr 261 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
24 oveq2 5520 . . . . . . . . . . . . 13 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝑀𝐿) / 2)))
2524breq2d 3776 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2))))
26 oveq2 5520 . . . . . . . . . . . . 13 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝑀𝐿) / 2)))
2726breq2d 3776 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
2825, 27anbi12d 442 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
29 oveq2 5520 . . . . . . . . . . . . 13 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝑀𝐿) / 2)))
3029breq2d 3776 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2))))
3126breq2d 3776 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
3230, 31anbi12d 442 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
3328, 32anbi12d 442 . . . . . . . . . 10 (𝑥 = ((𝑀𝐿) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
3433rexbidv 2327 . . . . . . . . 9 (𝑥 = ((𝑀𝐿) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
3534rspcv 2652 . . . . . . . 8 (((𝑀𝐿) / 2) ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
3611, 23, 35sylc 56 . . . . . . 7 ((𝜑𝐿 < 𝑀) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
37 recvguniq.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3837ad2antrr 457 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐹:ℕ⟶ℝ)
392ad2antrr 457 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 ∈ ℝ)
401ad2antrr 457 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐿 ∈ ℝ)
41 simprl 483 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑘 ∈ ℕ)
42 simprrr 492 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
4342adantl 262 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
44 simprll 489 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4544adantl 262 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4638, 39, 40, 41, 43, 45recvguniqlem 9592 . . . . . . 7 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → ⊥)
4736, 46rexlimddv 2437 . . . . . 6 ((𝜑𝐿 < 𝑀) → ⊥)
4847ex 108 . . . . 5 (𝜑 → (𝐿 < 𝑀 → ⊥))
49 difrp 8619 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
502, 1, 49syl2anc 391 . . . . . . . . . 10 (𝜑 → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
5150biimpa 280 . . . . . . . . 9 ((𝜑𝑀 < 𝐿) → (𝐿𝑀) ∈ ℝ+)
5251rphalfcld 8635 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ((𝐿𝑀) / 2) ∈ ℝ+)
5322adantr 261 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
54 oveq2 5520 . . . . . . . . . . . . 13 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝐿𝑀) / 2)))
5554breq2d 3776 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2))))
56 oveq2 5520 . . . . . . . . . . . . 13 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝐿𝑀) / 2)))
5756breq2d 3776 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
5855, 57anbi12d 442 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
59 oveq2 5520 . . . . . . . . . . . . 13 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝐿𝑀) / 2)))
6059breq2d 3776 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2))))
6156breq2d 3776 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
6260, 61anbi12d 442 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
6358, 62anbi12d 442 . . . . . . . . . 10 (𝑥 = ((𝐿𝑀) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
6463rexbidv 2327 . . . . . . . . 9 (𝑥 = ((𝐿𝑀) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
6564rspcv 2652 . . . . . . . 8 (((𝐿𝑀) / 2) ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
6652, 53, 65sylc 56 . . . . . . 7 ((𝜑𝑀 < 𝐿) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
6737ad2antrr 457 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐹:ℕ⟶ℝ)
681ad2antrr 457 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 ∈ ℝ)
692ad2antrr 457 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑀 ∈ ℝ)
70 simprl 483 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑘 ∈ ℕ)
71 simprlr 490 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
7271adantl 262 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
73 simprrl 491 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7473adantl 262 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7567, 68, 69, 70, 72, 74recvguniqlem 9592 . . . . . . 7 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → ⊥)
7666, 75rexlimddv 2437 . . . . . 6 ((𝜑𝑀 < 𝐿) → ⊥)
7776ex 108 . . . . 5 (𝜑 → (𝑀 < 𝐿 → ⊥))
7848, 77jaod 637 . . . 4 (𝜑 → ((𝐿 < 𝑀𝑀 < 𝐿) → ⊥))
794, 78sylbid 139 . . 3 (𝜑 → (𝐿 # 𝑀 → ⊥))
80 dfnot 1262 . . 3 𝐿 # 𝑀 ↔ (𝐿 # 𝑀 → ⊥))
8179, 80sylibr 137 . 2 (𝜑 → ¬ 𝐿 # 𝑀)
821recnd 7054 . . 3 (𝜑𝐿 ∈ ℂ)
832recnd 7054 . . 3 (𝜑𝑀 ∈ ℂ)
84 apti 7613 . . 3 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8582, 83, 84syl2anc 391 . 2 (𝜑 → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8681, 85mpbird 156 1 (𝜑𝐿 = 𝑀)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629   = wceq 1243  wfal 1248  wcel 1393  wral 2306  wrex 2307   class class class wbr 3764  wf 4898  cfv 4902  (class class class)co 5512  cc 6887  cr 6888  1c1 6890   + caddc 6892   < clt 7060  cmin 7182   # cap 7572   / cdiv 7651  cn 7914  2c2 7964  cuz 8473  +crp 8583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584
This theorem is referenced by:  resqrexlemsqa  9622
  Copyright terms: Public domain W3C validator