![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simprll | GIF version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simprll | ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 102 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antrl 459 | 1 ⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem is referenced by: imain 4981 fcof1 5423 mpt20 5574 eroveu 6197 addcmpblnq 6465 mulcmpblnq 6466 ordpipqqs 6472 addcmpblnq0 6541 mulcmpblnq0 6542 nnnq0lem1 6544 prarloclemcalc 6600 addlocpr 6634 distrlem4prl 6682 distrlem4pru 6683 ltpopr 6693 addcmpblnr 6824 mulcmpblnrlemg 6825 mulcmpblnr 6826 prsrlem1 6827 ltsrprg 6832 apreap 7578 apreim 7594 divdivdivap 7689 divmuleqap 7693 divadddivap 7703 divsubdivap 7704 ledivdiv 7856 lediv12a 7860 qbtwnz 9106 iseqcaopr 9242 leexp2r 9308 recvguniq 9593 rsqrmo 9625 |
Copyright terms: Public domain | W3C validator |