Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqpru GIF version

 Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addnqpru ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))

Dummy variables 𝑥 𝑦 𝑟 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6573 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 addnqprulem 6626 . . . . . 6 (((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴)))
31, 2sylanl1 382 . . . . 5 (((𝐴P𝐺 ∈ (2nd𝐴)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴)))
43adantlr 446 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴)))
5 prop 6573 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
6 addnqprulem 6626 . . . . . 6 (((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (2nd𝐵)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)))
75, 6sylanl1 382 . . . . 5 (((𝐵P𝐻 ∈ (2nd𝐵)) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)))
87adantll 445 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)))
94, 8jcad 291 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵))))
10 simpl 102 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))))
11 simpl 102 . . . . 5 ((𝐴P𝐺 ∈ (2nd𝐴)) → 𝐴P)
12 simpl 102 . . . . 5 ((𝐵P𝐻 ∈ (2nd𝐵)) → 𝐵P)
1311, 12anim12i 321 . . . 4 (((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) → (𝐴P𝐵P))
14 df-iplp 6566 . . . . 5 +P = (𝑥P, 𝑦P ↦ ⟨{𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (1st𝑥) ∧ 𝑠 ∈ (1st𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞Q ∣ ∃𝑟Q𝑠Q (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (2nd𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}⟩)
15 addclnq 6473 . . . . 5 ((𝑟Q𝑠Q) → (𝑟 +Q 𝑠) ∈ Q)
1614, 15genppreclu 6613 . . . 4 ((𝐴P𝐵P) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵))))
1710, 13, 163syl 17 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) ∈ (2nd𝐴) ∧ ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻) ∈ (2nd𝐵)) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵))))
189, 17syld 40 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵))))
19 simpr 103 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝑋Q)
20 elprnqu 6580 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
211, 20sylan 267 . . . . . . . 8 ((𝐴P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
2221ad2antrr 457 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐺Q)
23 elprnqu 6580 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
245, 23sylan 267 . . . . . . . 8 ((𝐵P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
2524ad2antlr 458 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐻Q)
26 addclnq 6473 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 +Q 𝐻) ∈ Q)
2722, 25, 26syl2anc 391 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 +Q 𝐻) ∈ Q)
28 recclnq 6490 . . . . . 6 ((𝐺 +Q 𝐻) ∈ Q → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
2927, 28syl 14 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (*Q‘(𝐺 +Q 𝐻)) ∈ Q)
30 mulassnqg 6482 . . . . 5 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
3119, 29, 27, 30syl3anc 1135 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))))
32 mulclnq 6474 . . . . . 6 ((𝑋Q ∧ (*Q‘(𝐺 +Q 𝐻)) ∈ Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
3319, 29, 32syl2anc 391 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q)
34 distrnqg 6485 . . . . 5 (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ∈ Q𝐺Q𝐻Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
3533, 22, 25, 34syl3anc 1135 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)))
36 mulcomnqg 6481 . . . . . . . 8 (((*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
3729, 27, 36syl2anc 391 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))))
38 recidnq 6491 . . . . . . . 8 ((𝐺 +Q 𝐻) ∈ Q → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
3927, 38syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) ·Q (*Q‘(𝐺 +Q 𝐻))) = 1Q)
4037, 39eqtrd 2072 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻)) = 1Q)
4140oveq2d 5528 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = (𝑋 ·Q 1Q))
42 mulidnq 6487 . . . . . 6 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
4342adantl 262 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
4441, 43eqtrd 2072 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q‘(𝐺 +Q 𝐻)) ·Q (𝐺 +Q 𝐻))) = 𝑋)
4531, 35, 443eqtr3d 2080 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) = 𝑋)
4645eleq1d 2106 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐺) +Q ((𝑋 ·Q (*Q‘(𝐺 +Q 𝐻))) ·Q 𝐻)) ∈ (2nd ‘(𝐴 +P 𝐵)) ↔ 𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))
4718, 46sylibd 138 1 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   = wceq 1243   ∈ wcel 1393  ⟨cop 3378   class class class wbr 3764  ‘cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378  1Qc1q 6379   +Q cplq 6380   ·Q cmq 6381  *Qcrq 6382
 Copyright terms: Public domain W3C validator