Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  recnnre GIF version

Theorem recnnre 6927
 Description: Embedding the reciprocal of a natural number into ℝ. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
recnnre (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
Distinct variable group:   𝑁,𝑙,𝑢

Proof of Theorem recnnre
StepHypRef Expression
1 recnnpr 6646 . . . . . 6 (𝑁N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
2 1pr 6652 . . . . . 6 1PP
3 addclpr 6635 . . . . . 6 ((⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ ∈ P ∧ 1PP) → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P)
41, 2, 3sylancl 392 . . . . 5 (𝑁N → (⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P)
5 opelxpi 4376 . . . . 5 (((⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P) ∈ P ∧ 1PP) → ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
64, 2, 5sylancl 392 . . . 4 (𝑁N → ⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P))
7 enrex 6822 . . . . 5 ~R ∈ V
87ecelqsi 6160 . . . 4 (⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩ ∈ (P × P) → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
96, 8syl 14 . . 3 (𝑁N → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ∈ ((P × P) / ~R ))
10 df-nr 6812 . . 3 R = ((P × P) / ~R )
119, 10syl6eleqr 2131 . 2 (𝑁N → [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
12 opelreal 6904 . 2 (⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ ↔ [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~RR)
1311, 12sylibr 137 1 (𝑁N → ⟨[⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑁, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑁, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ ℝ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1393  {cab 2026  ⟨cop 3378   class class class wbr 3764   × cxp 4343  ‘cfv 4902  (class class class)co 5512  1𝑜c1o 5994  [cec 6104   / cqs 6105  Ncnpi 6370   ~Q ceq 6377  *Qcrq 6382
 Copyright terms: Public domain W3C validator