ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelrnda Structured version   GIF version

Theorem ffvelrnda 5227
Description: A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypothesis
Ref Expression
ffvelrnd.1 (φ𝐹:AB)
Assertion
Ref Expression
ffvelrnda ((φ 𝐶 A) → (𝐹𝐶) B)

Proof of Theorem ffvelrnda
StepHypRef Expression
1 ffvelrnd.1 . 2 (φ𝐹:AB)
2 ffvelrn 5225 . 2 ((𝐹:AB 𝐶 A) → (𝐹𝐶) B)
31, 2sylan 267 1 ((φ 𝐶 A) → (𝐹𝐶) B)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   wcel 1374  wf 4825  cfv 4829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-sep 3849  ax-pow 3901  ax-pr 3918
This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1628  df-eu 1885  df-mo 1886  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-rex 2290  df-v 2537  df-sbc 2742  df-un 2899  df-in 2901  df-ss 2908  df-pw 3336  df-sn 3356  df-pr 3357  df-op 3359  df-uni 3555  df-br 3739  df-opab 3793  df-id 4004  df-xp 4278  df-rel 4279  df-cnv 4280  df-co 4281  df-dm 4282  df-rn 4283  df-iota 4794  df-fun 4831  df-fn 4832  df-f 4833  df-fv 4837
This theorem is referenced by:  ffvelrnd  5228  f1ocnvdm  5346  foeqcnvco  5355  f1oiso2  5391  suppssof1  5651  ofco  5652  caofref  5655  caofinvl  5656  caofcom  5657  caofrss  5658  caoftrn  5659  smofvon2dm  5833  smofvon  5836
  Copyright terms: Public domain W3C validator