ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvelrnda GIF version

Theorem ffvelrnda 5245
Description: A function's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypothesis
Ref Expression
ffvelrnd.1 (φ𝐹:AB)
Assertion
Ref Expression
ffvelrnda ((φ 𝐶 A) → (𝐹𝐶) B)

Proof of Theorem ffvelrnda
StepHypRef Expression
1 ffvelrnd.1 . 2 (φ𝐹:AB)
2 ffvelrn 5243 . 2 ((𝐹:AB 𝐶 A) → (𝐹𝐶) B)
31, 2sylan 267 1 ((φ 𝐶 A) → (𝐹𝐶) B)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   wcel 1390  wf 4841  cfv 4845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-fv 4853
This theorem is referenced by:  ffvelrnd  5246  f1ocnvdm  5364  foeqcnvco  5373  f1oiso2  5409  suppssof1  5670  ofco  5671  caofref  5674  caofinvl  5675  caofcom  5676  caofrss  5677  caoftrn  5678  smofvon2dm  5852  smofvon  5855  cauappcvgprlemladdru  6628  cauappcvgprlemladdrl  6629  caucvgprlemladdrl  6649
  Copyright terms: Public domain W3C validator