ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimdva Structured version   GIF version

Theorem rexlimdva 2409
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007.)
Hypothesis
Ref Expression
rexlimdva.1 ((φ x A) → (ψχ))
Assertion
Ref Expression
rexlimdva (φ → (x A ψχ))
Distinct variable groups:   φ,x   χ,x
Allowed substitution hints:   ψ(x)   A(x)

Proof of Theorem rexlimdva
StepHypRef Expression
1 rexlimdva.1 . . 3 ((φ x A) → (ψχ))
21ex 108 . 2 (φ → (x A → (ψχ)))
32rexlimdv 2408 1 (φ → (x A ψχ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   wcel 1374  wrex 2283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-17 1400  ax-ial 1409  ax-i5r 1410
This theorem depends on definitions:  df-bi 110  df-nf 1330  df-ral 2287  df-rex 2288
This theorem is referenced by:  rexlimdvaa  2410  rexlimivv  2414  rexlimdvv  2415  ralxfrd  4142  rexxfrd  4143  fvelimab  5152  foco2  5241  elunirn  5328  f1elima  5335  tfrlem5  5850  tfrlemibacc  5859  tfrlemibfn  5861  nnaordex  6009  nnawordex  6010  ectocld  6081  ltexnqq  6264  ltbtwnnqq  6270  prarloclem4  6350  prarloc2  6356  genprndl  6374  genprndu  6375  prmuloc2  6409  1idprl  6427  1idpru  6428  recexsrlem  6518
  Copyright terms: Public domain W3C validator