Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemibacc GIF version

Theorem tfrlemibacc 5940
 Description: Each element of 𝐵 is an acceptable function. Lemma for tfrlemi1 5946. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemibacc (𝜑𝐵𝐴)
Distinct variable groups:   𝑓,𝑔,,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑤,𝐵,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemibacc
StepHypRef Expression
1 tfrlemi1.3 . 2 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
2 simpr3 912 . . . . . . 7 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
3 tfrlemisucfn.1 . . . . . . . 8 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
4 tfrlemisucfn.2 . . . . . . . . 9 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
54ad2antrr 457 . . . . . . . 8 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
6 tfrlemi1.4 . . . . . . . . . 10 (𝜑𝑥 ∈ On)
76ad2antrr 457 . . . . . . . . 9 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑥 ∈ On)
8 simplr 482 . . . . . . . . 9 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑧𝑥)
9 onelon 4121 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑧𝑥) → 𝑧 ∈ On)
107, 8, 9syl2anc 391 . . . . . . . 8 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑧 ∈ On)
11 simpr1 910 . . . . . . . 8 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑔 Fn 𝑧)
12 simpr2 911 . . . . . . . 8 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝑔𝐴)
133, 5, 10, 11, 12tfrlemisucaccv 5939 . . . . . . 7 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
142, 13eqeltrd 2114 . . . . . 6 (((𝜑𝑧𝑥) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))) → 𝐴)
1514ex 108 . . . . 5 ((𝜑𝑧𝑥) → ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → 𝐴))
1615exlimdv 1700 . . . 4 ((𝜑𝑧𝑥) → (∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → 𝐴))
1716rexlimdva 2433 . . 3 (𝜑 → (∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → 𝐴))
1817abssdv 3014 . 2 (𝜑 → { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))} ⊆ 𝐴)
191, 18syl5eqss 2989 1 (𝜑𝐵𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 885  ∀wal 1241   = wceq 1243  ∃wex 1381   ∈ wcel 1393  {cab 2026  ∀wral 2306  ∃wrex 2307  Vcvv 2557   ∪ cun 2915   ⊆ wss 2917  {csn 3375  ⟨cop 3378  Oncon0 4100   ↾ cres 4347  Fun wfun 4896   Fn wfn 4897  ‘cfv 4902 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910 This theorem is referenced by:  tfrlemibfn  5942  tfrlemiubacc  5944
 Copyright terms: Public domain W3C validator