Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimivv Structured version   GIF version

Theorem rexlimivv 2432
 Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.)
Hypothesis
Ref Expression
rexlimivv.1 ((x A y B) → (φψ))
Assertion
Ref Expression
rexlimivv (x A y B φψ)
Distinct variable groups:   x,y,ψ   y,A
Allowed substitution hints:   φ(x,y)   A(x)   B(x,y)

Proof of Theorem rexlimivv
StepHypRef Expression
1 rexlimivv.1 . . 3 ((x A y B) → (φψ))
21rexlimdva 2427 . 2 (x A → (y B φψ))
32rexlimiv 2421 1 (x A y B φψ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∈ wcel 1390  ∃wrex 2301 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-i5r 1425 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-ral 2305  df-rex 2306 This theorem is referenced by:  opelxp  4317  f1o2ndf1  5791  xpdom2  6241  distrlem5prl  6561  distrlem5pru  6562  mulid1  6802  cnegex  6966  recexap  7396  creur  7672  creui  7673  cju  7674  elz2  8068  qre  8316  qaddcl  8326  qnegcl  8327  qmulcl  8328  qreccl  8331  replim  9067
 Copyright terms: Public domain W3C validator