HomeHome Intuitionistic Logic Explorer
Theorem List (p. 25 of 100)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2401-2500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremralrimdvva 2401* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
 
Theoremrgen2 2402* Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
((𝑥𝐴𝑦𝐵) → 𝜑)       𝑥𝐴𝑦𝐵 𝜑
 
Theoremrgen3 2403* Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)       𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
 
Theoremr19.21bi 2404 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
(𝜑 → ∀𝑥𝐴 𝜓)       ((𝜑𝑥𝐴) → 𝜓)
 
Theoremrspec2 2405 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
𝑥𝐴𝑦𝐵 𝜑       ((𝑥𝐴𝑦𝐵) → 𝜑)
 
Theoremrspec3 2406 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
𝑥𝐴𝑦𝐵𝑧𝐶 𝜑       ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
 
Theoremr19.21be 2407 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.)
(𝜑 → ∀𝑥𝐴 𝜓)       𝑥𝐴 (𝜑𝜓)
 
Theoremnrex 2408 Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
(𝑥𝐴 → ¬ 𝜓)        ¬ ∃𝑥𝐴 𝜓
 
Theoremnrexdv 2409* Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
((𝜑𝑥𝐴) → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝐴 𝜓)
 
Theoremrexim 2410 Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
 
Theoremreximia 2411 Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.)
(𝑥𝐴 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
 
Theoremreximi2 2412 Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
((𝑥𝐴𝜑) → (𝑥𝐵𝜓))       (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜓)
 
Theoremreximi 2413 Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.)
(𝜑𝜓)       (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
 
Theoremreximdai 2414 Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
𝑥𝜑    &   (𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
 
Theoremreximdv2 2415* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.)
(𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐵 𝜒))
 
Theoremreximdvai 2416* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.)
(𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
 
Theoremreximdv 2417* Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
 
Theoremreximdva 2418* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
 
Theoremr19.12 2419* Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(∃𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵𝑥𝐴 𝜑)
 
Theoremr19.23t 2420 Closed theorem form of r19.23 2421. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
(Ⅎ𝑥𝜓 → (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
 
Theoremr19.23 2421 Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.)
𝑥𝜓       (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
 
Theoremr19.23v 2422* Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
(∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
 
Theoremrexlimi 2423 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
𝑥𝜓    &   (𝑥𝐴 → (𝜑𝜓))       (∃𝑥𝐴 𝜑𝜓)
 
Theoremrexlimiv 2424* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
(𝑥𝐴 → (𝜑𝜓))       (∃𝑥𝐴 𝜑𝜓)
 
Theoremrexlimiva 2425* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.)
((𝑥𝐴𝜑) → 𝜓)       (∃𝑥𝐴 𝜑𝜓)
 
Theoremrexlimivw 2426* Weaker version of rexlimiv 2424. (Contributed by FL, 19-Sep-2011.)
(𝜑𝜓)       (∃𝑥𝐴 𝜑𝜓)
 
Theoremrexlimd 2427 Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimd2 2428 Version of rexlimd 2427 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜒)    &   (𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdv 2429* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
(𝜑 → (𝑥𝐴 → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdva 2430* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdvaa 2431* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdv3a 2432* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). Frequently-used variant of rexlimdv 2429. (Contributed by NM, 7-Jun-2015.)
((𝜑𝑥𝐴𝜓) → 𝜒)       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimdvw 2433* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimddv 2434* Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.)
(𝜑 → ∃𝑥𝐴 𝜓)    &   ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)       (𝜑𝜒)
 
Theoremrexlimivv 2435* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.)
((𝑥𝐴𝑦𝐵) → (𝜑𝜓))       (∃𝑥𝐴𝑦𝐵 𝜑𝜓)
 
Theoremrexlimdvv 2436* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.)
(𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))       (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
 
Theoremrexlimdvva 2437* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.)
((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓𝜒))
 
Theoremr19.26 2438 Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
 
Theoremr19.26-2 2439 Theorem 19.26 of [Margaris] p. 90 with 2 restricted quantifiers. (Contributed by NM, 10-Aug-2004.)
(∀𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 ∧ ∀𝑥𝐴𝑦𝐵 𝜓))
 
Theoremr19.26-3 2440 Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.)
(∀𝑥𝐴 (𝜑𝜓𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))
 
Theoremr19.26m 2441 Theorem 19.26 of [Margaris] p. 90 with mixed quantifiers. (Contributed by NM, 22-Feb-2004.)
(∀𝑥((𝑥𝐴𝜑) ∧ (𝑥𝐵𝜓)) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜓))
 
Theoremralbi 2442 Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.)
(∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 𝜓))
 
Theoremrexbi 2443 Distribute a restricted existential quantifier over a biconditional. Theorem 19.18 of [Margaris] p. 90 with restricted quantification. (Contributed by Jim Kingdon, 21-Jan-2019.)
(∀𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓))
 
Theoremralbiim 2444 Split a biconditional and distribute quantifier. (Contributed by NM, 3-Jun-2012.)
(∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))
 
Theoremr19.27av 2445* Restricted version of one direction of Theorem 19.27 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.)
((∀𝑥𝐴 𝜑𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.28av 2446* Restricted version of one direction of Theorem 19.28 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 2-Apr-2004.)
((𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.29 2447 Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.)
((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
 
Theoremr19.29r 2448 Variation of Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
 
Theoremr19.29af2 2449 A commonly used pattern based on r19.29 2447 (Contributed by Thierry Arnoux, 17-Dec-2017.)
𝑥𝜑    &   𝑥𝜒    &   (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑𝜒)
 
Theoremr19.29af 2450* A commonly used pattern based on r19.29 2447 (Contributed by Thierry Arnoux, 29-Nov-2017.)
𝑥𝜑    &   (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑𝜒)
 
Theoremr19.29a 2451* A commonly used pattern based on r19.29 2447 (Contributed by Thierry Arnoux, 22-Nov-2017.)
(((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑𝜒)
 
Theoremr19.29d2r 2452 Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version (Contributed by Thierry Arnoux, 30-Jan-2017.)
(𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)    &   (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)       (𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))
 
Theoremr19.29vva 2453* A commonly used pattern based on r19.29 2447, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.)
((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)       (𝜑𝜒)
 
Theoremr19.32r 2454 One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.)
𝑥𝜑       ((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.32vr 2455* One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence, as seen at r19.32vdc 2456. (Contributed by Jim Kingdon, 19-Aug-2018.)
((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.32vdc 2456* Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
(DECID 𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓)))
 
Theoremr19.35-1 2457 Restricted quantifier version of 19.35-1 1515. (Contributed by Jim Kingdon, 4-Jun-2018.)
(∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
 
Theoremr19.36av 2458* One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. In classical logic, the converse would hold if 𝐴 has at least one element, but in intuitionistic logic, that is not a sufficient condition. (Contributed by NM, 22-Oct-2003.)
(∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑𝜓))
 
Theoremr19.37 2459 Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. In classical logic the converse would hold if 𝐴 has at least one element, but that is not sufficient in intuitionistic logic. (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑥𝜑       (∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))
 
Theoremr19.37av 2460* Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))
 
Theoremr19.40 2461 Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓))
 
Theoremr19.41 2462 Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 1-Nov-2010.)
𝑥𝜓       (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
 
Theoremr19.41v 2463* Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 17-Dec-2003.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
 
Theoremr19.42v 2464* Restricted version of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝐴 𝜓))
 
Theoremr19.43 2465 Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof rewritten by Jim Kingdon, 5-Jun-2018.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
 
Theoremr19.44av 2466* One direction of a restricted quantifier version of Theorem 19.44 of [Margaris] p. 90. The other direction doesn't hold when 𝐴 is empty. (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑𝜓))
 
Theoremr19.45av 2467* Restricted version of one direction of Theorem 19.45 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (𝜑 ∨ ∃𝑥𝐴 𝜓))
 
Theoremralcomf 2468* Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
𝑦𝐴    &   𝑥𝐵       (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
 
Theoremrexcomf 2469* Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
𝑦𝐴    &   𝑥𝐵       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
 
Theoremralcom 2470* Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
(∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
 
Theoremrexcom 2471* Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
(∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
 
Theoremrexcom13 2472* Swap 1st and 3rd restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
 
Theoremrexrot4 2473* Rotate existential restricted quantifiers twice. (Contributed by NM, 8-Apr-2015.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑)
 
Theoremralcom3 2474 A commutative law for restricted quantifiers that swaps the domain of the restriction. (Contributed by NM, 22-Feb-2004.)
(∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥𝐵 (𝑥𝐴𝜑))
 
Theoremreean 2475* Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
 
Theoremreeanv 2476* Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.)
(∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
 
Theorem3reeanv 2477* Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒))
 
Theoremnfreu1 2478 𝑥 is not free in ∃!𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
𝑥∃!𝑥𝐴 𝜑
 
Theoremnfrmo1 2479 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
𝑥∃*𝑥𝐴 𝜑
 
Theoremnfreudxy 2480* Not-free deduction for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)
 
Theoremnfreuxy 2481* Not-free for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
𝑥𝐴    &   𝑥𝜑       𝑥∃!𝑦𝐴 𝜑
 
Theoremrabid 2482 An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.)
(𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
 
Theoremrabid2 2483* An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)
 
Theoremrabbi 2484 Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2545. (Contributed by NM, 25-Nov-2013.)
(∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 
Theoremrabswap 2485 Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
{𝑥𝐴𝑥𝐵} = {𝑥𝐵𝑥𝐴}
 
Theoremnfrab1 2486 The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
𝑥{𝑥𝐴𝜑}
 
Theoremnfrabxy 2487* A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
𝑥𝜑    &   𝑥𝐴       𝑥{𝑦𝐴𝜑}
 
Theoremreubida 2488 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by Mario Carneiro, 19-Nov-2016.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 
Theoremreubidva 2489* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 13-Nov-2004.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 
Theoremreubidv 2490* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 17-Oct-1996.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 
Theoremreubiia 2491 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 14-Nov-2004.)
(𝑥𝐴 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)
 
Theoremreubii 2492 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 22-Oct-1999.)
(𝜑𝜓)       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)
 
Theoremrmobida 2493 Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
 
Theoremrmobidva 2494* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
 
Theoremrmobidv 2495* Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
 
Theoremrmobiia 2496 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
(𝑥𝐴 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
 
Theoremrmobii 2497 Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
(𝜑𝜓)       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
 
Theoremraleqf 2498 Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
 
Theoremrexeqf 2499 Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
 
Theoremreueq1f 2500 Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-9995
  Copyright terms: Public domain < Previous  Next >