Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reubidv GIF version

Theorem reubidv 2493
 Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 17-Oct-1996.)
Hypothesis
Ref Expression
reubidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
reubidv (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reubidv
StepHypRef Expression
1 reubidv.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 261 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
32reubidva 2492 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   ∈ wcel 1393  ∃!wreu 2308 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-eu 1903  df-reu 2313 This theorem is referenced by:  reueqd  2515  sbcreug  2838  srpospr  6867  creur  7911  creui  7912
 Copyright terms: Public domain W3C validator