![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reximdv2 | GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
reximdv2.1 | ⊢ (φ → ((x ∈ A ∧ ψ) → (x ∈ B ∧ χ))) |
Ref | Expression |
---|---|
reximdv2 | ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ B χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv2.1 | . . 3 ⊢ (φ → ((x ∈ A ∧ ψ) → (x ∈ B ∧ χ))) | |
2 | 1 | eximdv 1757 | . 2 ⊢ (φ → (∃x(x ∈ A ∧ ψ) → ∃x(x ∈ B ∧ χ))) |
3 | df-rex 2306 | . 2 ⊢ (∃x ∈ A ψ ↔ ∃x(x ∈ A ∧ ψ)) | |
4 | df-rex 2306 | . 2 ⊢ (∃x ∈ B χ ↔ ∃x(x ∈ B ∧ χ)) | |
5 | 2, 3, 4 | 3imtr4g 194 | 1 ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ B χ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∃wex 1378 ∈ wcel 1390 ∃wrex 2301 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-4 1397 ax-17 1416 ax-ial 1424 |
This theorem depends on definitions: df-bi 110 df-rex 2306 |
This theorem is referenced by: ssrexv 2999 ssimaex 5177 |
Copyright terms: Public domain | W3C validator |