 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimdvva GIF version

Theorem ralrimdvva 2404
 Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
Hypothesis
Ref Expression
ralrimdvva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
ralrimdvva (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralrimdvva
StepHypRef Expression
1 ralrimdvva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21ex 108 . . 3 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝜓𝜒)))
32com23 72 . 2 (𝜑 → (𝜓 → ((𝑥𝐴𝑦𝐵) → 𝜒)))
43ralrimdvv 2403 1 (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∈ wcel 1393  ∀wral 2306 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400  ax-17 1419 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-ral 2311 This theorem is referenced by:  isosolem  5463
 Copyright terms: Public domain W3C validator