Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.29d2r | GIF version |
Description: Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
r19.29d2r.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
r19.29d2r.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) |
Ref | Expression |
---|---|
r19.29d2r | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29d2r.1 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) | |
2 | r19.29d2r.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) | |
3 | r19.29 2450 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜒) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒)) | |
4 | 1, 2, 3 | syl2anc 391 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒)) |
5 | r19.29 2450 | . . 3 ⊢ ((∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒) → ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) | |
6 | 5 | reximi 2416 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜓 ∧ ∃𝑦 ∈ 𝐵 𝜒) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) |
7 | 4, 6 | syl 14 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∀wral 2306 ∃wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-ral 2311 df-rex 2312 |
This theorem is referenced by: r19.29vva 2456 cauappcvgprlemdisj 6749 |
Copyright terms: Public domain | W3C validator |