ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspec2 Structured version   GIF version

Theorem rspec2 2386
Description: Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
Hypothesis
Ref Expression
rspec2.1 x A y B φ
Assertion
Ref Expression
rspec2 ((x A y B) → φ)

Proof of Theorem rspec2
StepHypRef Expression
1 rspec2.1 . . 3 x A y B φ
21rspec 2351 . 2 (x Ay B φ)
32r19.21bi 2385 1 ((x A y B) → φ)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   wcel 1374  wral 2284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-4 1381
This theorem depends on definitions:  df-bi 110  df-ral 2289
This theorem is referenced by:  rspec3  2387  ordtriexmid  4194  onsucsssucexmid  4196
  Copyright terms: Public domain W3C validator