ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexlimivw Structured version   GIF version

Theorem rexlimivw 2405
Description: Weaker version of rexlimiv 2403. (Contributed by FL, 19-Sep-2011.)
Hypothesis
Ref Expression
rexlimivw.1 (φψ)
Assertion
Ref Expression
rexlimivw (x A φψ)
Distinct variable group:   ψ,x
Allowed substitution hints:   φ(x)   A(x)

Proof of Theorem rexlimivw
StepHypRef Expression
1 rexlimivw.1 . . 3 (φψ)
21a1i 9 . 2 (x A → (φψ))
32rexlimiv 2403 1 (x A φψ)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1375  wrex 2283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1315  ax-gen 1317  ax-ie1 1362  ax-ie2 1363  ax-4 1382  ax-17 1401  ax-ial 1410  ax-i5r 1411
This theorem depends on definitions:  df-bi 110  df-nf 1329  df-ral 2287  df-rex 2288
This theorem is referenced by:  r19.29_2a  2432  eliun  3613  reusv3i  4114  elrnmptg  4479  fun11iun  5039  fmpt  5211  fliftfun  5328  elrnmpt2  5506  releldm2  5700  tfrlem4  5816
  Copyright terms: Public domain W3C validator