![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfreu1 | GIF version |
Description: 𝑥 is not free in ∃!𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
nfreu1 | ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2313 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfeu1 1911 | . 2 ⊢ Ⅎ𝑥∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1363 | 1 ⊢ Ⅎ𝑥∃!𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 Ⅎwnf 1349 ∈ wcel 1393 ∃!weu 1900 ∃!wreu 2308 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-eu 1903 df-reu 2313 |
This theorem is referenced by: riota2df 5488 |
Copyright terms: Public domain | W3C validator |