![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimiv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
rexlimiv.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimiv | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rexlimiv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
3 | 1, 2 | rexlimi 2426 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1393 ∃wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-ral 2311 df-rex 2312 |
This theorem is referenced by: rexlimiva 2428 rexlimivw 2429 rexlimivv 2438 r19.36av 2461 r19.44av 2469 r19.45av 2470 rexn0 3319 uniss2 3611 elres 4646 ssimaex 5234 tfrlem5 5930 tfrlem8 5934 ecoptocl 6193 findcard 6345 findcard2 6346 findcard2s 6347 prnmaddl 6588 0re 7027 cnegexlem2 7187 0cnALT 7201 bndndx 8180 uzn0 8488 ublbneg 8548 rexanuz2 9589 bj-inf2vnlem2 10096 |
Copyright terms: Public domain | W3C validator |